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ABSTRACT

Peng, Wei Ph.D., Purdue University, May 2015. On Several Problems Regarding
the Application of Opportunistic Proximate Links in Smartphone Networks. Major
Professors: Dr. Feng Li, Dr. Xukai Zou, and Dr. Ninghui Li.

A defining characteristic of smartphones is the availability of short-range radio

transceivers (the proximate channel) such as Bluetooth, NFC, and Wi-Fi Direct, in

addition to traditional long-range cellular telecommunication technologies (the cellu-

lar channel). Coupled with smartphones’ portability and their human users’ mobility,

the proximate channel provides opportunistic proximate links as a supplement/alter-

native to the cellular channel’s persistent infrastructural links for data communica-

tion.

Opportunistic proximate links have a diverse set of applications, with each appli-

cation scenario bringing a unique set of often conflicting objectives to balance. This

dissertation presents a study on several problems regarding the application of oppor-

tunistic proximate links in smartphone networks. The first part of this dissertation,

which includes Chapter 2, 3, and 4, focuses on the cost-effective distribution of content

using opportunistic proximate links, and examines several applications: 1. Chapter 2

is on the use of opportunistic proximate links in selecting a representative subset from

a set of smartphones for prioritized defense deployment in a Bring-Your-Own-Device

(BYOD) enterprise network environment. 2. Chapter 3 is on the use of opportunistic

proximate links for offloading bounded-delay-tolerant topical content from cellular

persistent infrastructural links. 3. Chapter 4 is on the use of opportunistic proximate

links in a generalized scenario of content distribution in a smartphone network that

is heterogeneous in the availability of cellular persistent infrastructural links.
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The second part of this dissertation, which includes Chapter 5 and 6, considers

the opposite problem of preventing the distribution of unwanted content (mobile mal-

ware) over opportunistic proximate links and the supplementary problem of detecting

mobile malware. Chapter 5 considers a probabilistic behavioral malware detection

framework for delay-tolerant smartphone networks that are connected by opportunis-

tic proximate links. Solutions to several challenging problems that are unique to de-

centralized and opportunistic nature of such networks, including “balance between

insufficient evidence and evidence collection risk,” “liars,” and “defectors” are pro-

posed and evaluated. Based on the widely used Android mobile computing platform,

Chapter 6 presents the design, implementation, and evaluation of a novel declarative

approach to static binary analysis of Android apps, which underlies the problem of

detecting malware on the Android platform. Real Android malware samples are an-

alyzed, and techniques to robustly handle them are proposed and evaluated.



www.manaraa.com

1

1 INTRODUCTION

The past two decades witness two significant transformations in the telecommuni-

cation industry: 1. the widespread consumer adoption of personal portable cellular

phones (along with the telecommunication infrastructures that support them), 2. the

evolution of such phones from earlier generations that only provide text-based user

interface (UI) and basic voice/text service (with the retronyms “dumb phones” and

“feature phones”) to the latest generation of smartphones that provide graphical UI

and data-driven multimedia services. Ephemeral market statistics [84] of “estimated

worldwide Android-based mobile device shipments reaching 1.4 billion units in 2015”

aside, the significant growth of smartphone adoption in the consumer market is re-

flected by a surge of academic research on the application [183, 184, 25, 116, 152] and

security [204, 69, 236, 149, 228, 43] of smartphone platforms.

A defining characteristic of smartphones is their diverse connectivity capabili-

ties. In addition to long-range cellular telecommunication technologies (the cellular

channel, e.g., voice channel and 3G/4G/LTE data channel), smartphones are often

equipped with short-range radio transceivers (the proximate channel, e.g., Wi-Fi,

Bluetooth, NFC [146], and Wi-Fi Direct [210]) with various effective communication

distances from direct contact for NFC up to tens of meters in practice for recent

Bluetooth and Wi-Fi Direct implementations. Although limited in coverage range

comparing with the almost ubiquitous availability of the cellular channel, the prox-

imate channel is free of data surcharges and usually has wider and more consistent

bandwidth than the cellular channel. Coupled with smartphones’ portability and

their human users’ mobility, the proximate channel provide opportunistic proximate

links as a supplement/alternative to the cellular channel’s persistent infrastructural

links for data communication.
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Opportunistic proximate links have diverse applications, with each application

having a unique set of often conflicting objectives to balance. The main subject

of this dissertation is to examine several problems regarding such applications of

opportunistic proximate links in smartphone networks.

• Chapter 2, “T -dominance: Prioritized Defense Deployment for BYOD Secu-

rity” [153], is on the use of opportunistic proximate links in selecting a repre-

sentative subset from a set of smartphones for prioritized defense deployment

in a bring-your-own-device (BYOD) enterprise network environment.

• Chapter 3, “The Virtue of Patience: Offloading Topical Cellular Content through

Opportunistic Links” [154], is on the use of opportunistic proximate links in

offloading bounded-delay-tolerant topical content from cellular persistent in-

frastructural links.

• Chapter 4, “Temporal Coverage Based Content Distribution in Heterogeneous

Smart Device Networks” [155], is on the use of opportunistic proximate links

in a generalized scenario (from the above applications) of content distribution

in a smartphone network that is heterogeneous in the availability of cellular

persistent infrastructural links.

The common challenges of these applications are:

• The use of opportunistic proximate links is decentralized due to the high costs

or unavailability of centralized coordination through cellular persistent infras-

tructural links.

• Content that needs to be distributed in these applications (e.g., vulnerability

patches in Chapter 2 and user-subscribed content in Chapter 3) can often tol-

erate a bounded amount of delivery delay, in exchange for the reduced delivery

cost of using free opportunistic proximate links instead of costly persistent in-

frastructural links.



www.manaraa.com

3

Each of the above chapters is dedicated to addressing the manifestation of these

challenges in its respective application scenario.

Unlike the aforementioned chapters, which focus on facilitating cost-effective con-

tent distribution using opportunistic proximate links, Chapter 5, “Behavioral Mal-

ware Detection in Delay Tolerant Networks” [156, 151], considers the opposite prob-

lem of preventing the distribution of unwanted content over opportunistic proximate

links. A probabilistic behavioral malware detection framework is considered for delay-

tolerant smartphone networks that are connected by opportunistic proximate links,

and solutions to several challenging problems that are unique to de-centralized and op-

portunistic nature of such networks, including “balance between insufficient evidence

and evidence collection risk,” “liars,” and “defectors” are proposed and evaluated.

As a supplement to Chapter 5, Chapter 6, “Web of APKs (WoA): A Declarative

Approach for Static Android PacKage (APK) Binary Analysis,” takes a different

angle to addressing the problem of detecting mobile malware. Based on a concrete

target—the widely used Android mobile computing platform, Chapter 6 presents

the design, implementation, and evaluation of a novel declarative approach to static

binary analysis of Android apps, which underlies the problem of detecting malware

on the Android platform. Real Android malware samples are analyzed in detail, and

techniques to robustly handle them are designed and evaluated.

Each of the following chapters is self-contained and can be read independently.
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2 T -DOMINANCE: PRIORITIZED DEFENSE DEPLOYMENT FOR BYOD

SECURITY

The application of opportunistic proximate links considered in this chapter is pri-

oritized defense deployment in enterprise BYOD smartphones. The essence of this

chapter is to use individual smartphones’ proximate channel encounter information to

distributedly elect, without central planning or coordination, a subset of smartphones

to represent the full set of smartphones. These representative smartphones are prior-

itized for deploying security mechanisms such as malware scanning or patching, and

can then extend the reach of these security mechanisms to the full smartphone net-

work through their opportunistic encounters.

This chapter is previously published as a conference paper [153] in IEEE Confer-

ence on Communications and Network Security (CNS), 2013.

2.1 Introduction

Bring Your Own Device (BYOD) is an enterprise information technology (IT)

policy that encourages employees to use their own devices to access sensitive corpo-

rate data at work through the enterprise IT infrastructure. Employees’ demand/sat-

isfaction, decreased IT acquisition and support cost, and increased use of cloud/vir-

tualization technologies in enterprise IT infrastructure are common justifications for

adopting BYOD [166]. With the consumerization of smartphones and tablet comput-

ers (smartphones for brevity) in recent years, the demand for using personal smart-

phones in the workplace has brought BYOD to the attention of enterprise IT profes-

sionals as one of the “tech trends for 2013 [98].”

Despite the commonly cited benefits, BYOD presents significant security chal-

lenges. On the one hand, forwarding corporate e-mails to public Web mail services,
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Figure 2.1.: T -dominance exploits temporal-spatial patterns of BYOD devices to
implement prioritized defense deployment. The black node T -dominates the white
ones for T > 4.

using public cloud-based storage services (e.g., Dropbox and Apple’s iCloud) to store

corporate documents, or even interacting with smartphones through voice in the work-

place may leak sensitive corporate information assets [24]; moreover, employees may

inadvertently or maliciously introduce malware to the enterprise network behind the

firewalls through their own malware-infected smartphones. On the other hand, forc-

ing employees to disable common applications such as Dropbox [24], though may be

necessary security-wise, significantly worsen employees’ BYOD experience; frequently

auditing the use of employees’ smartphones not only intrudes on their convenience,

but is also costly to implement.

To address such tension, we propose prioritized defense deployment : Instead of

employing the same costly and intrusive security measures on each BYOD smart-

phone, more stringent threat detection/mitigation mechanisms are deployed on those

representative smartphones, each of which represents, security-wise, a group of smart-

phones in the whole BYOD device pool.

In this chapter, we interpret and measure security representativeness through the

temporal-spatial pattern inherent in an enterprise environment: Those BYOD smart-

phones that connect with many other smartphones often are representative security-
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wise, because they are exposed to more attacks and have more severe consequences

if compromised.

More specifically, we interpret and measure security representativeness with a

novel temporal-spatial structural property and propose a distributed algorithm (run-

ning distributedly on individual smartphones) that robustly preserves that property.

We name both the property and the algorithm T -dominance, in which T is a temporal

bound. Each BYOD smartphone executes the T -dominance algorithm and, based on

potentially outdated information from proximate smartphones (as briefly discussed

in Section 2.2, such information is readily available on many consumer smartphones),

estimates its security representativeness. If a smartphone considers itself as represen-

tative, it turns into an agent. The algorithm needs no central coordination, which

reduces maintenance overhead for enterprise IT administration and is less intrusive to

BYOD employees. After running the algorithm for awhile, the whole BYOD smart-

phone pool will be T -dominated by the agents: Each smartphone is either an agent,

or is highly likely to be proximate to an agent with a delay not exceeding T . The

idea of T -dominance is illustrated in Figure 2.1. A more intrusive and costly defense

mechanism will be deployed on the agents.

Prioritized defense deployment based T -dominance provides an adjustable (through

T ) balance between security provision and mechanism intrusiveness/cost. We define

the concept of T -dominance and present an algorithm to implement it (Section 2.3).

We show the temporal robustness and the effectiveness of the proposed algorithm

through analysis (Section 2.4) and trace-driven experiments (Section 2.5), and put

our works in the context of previous research (Section 2.7).

In summary, we make the following contributions.

• We propose prioritized defense deployment based on security representativeness

as a solution to the tension between the demand for BYOD security practices

and the intrusiveness/cost of such practices.
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• We propose a novel interpretation of security representativeness, based on the

inherent temporal-spatial structures in an enterprise environment, and illustrate

the application of the concept: strategic sampling to detect malware, prioritized

patching to prevent or recover from damage.

• We propose a method, T -dominance, to capture the temporal-spatial dynamics

of BYOD smartphone networks in a graph structure (Definition 1) and maintain

such a structure with an algorithm that does not incur extra administration

cost, and is less intrusive to employees (Section 2.3).

• We show the temporal robustness and the effectiveness of the proposed algo-

rithm through analysis (Section 2.4) and trace-driven experiments (Section 2.5).

The temporal robustness ensures that the T -dominance algorithm will maintain

the T -dominance structural property on potentially outdated information, due

to the absence of constant, central coordination.

2.2 Model

Due to the wide deployment of Wi-Fi infrastructure in enterprise networks and

the wide availability of Wi-Fi co-location information on smartphones (to support, for

example, location-based services), we consider a threat model that includes, besides

the common drive-by download attack, smartphone malware that can infect Wi-Fi

co-located smartphones through techniques such as ARP poisoning; we briefly discuss

the feasibility and current state of such proximity malware attacks in Section 2.6.

Each smartphone maintains a connectivity log of past access point associations,

with entries in the form of (ST = s, ET = e, APID = APi) indicating that the

smartphone is associated with access point APi from time s to e. Connectivity logging

is a standard feature on major mobile platforms, such as the consolidated.db in iOS’s

location-aware services [1].
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Given the connectivity log of a pair of smartphones, u and v, we can find the

maximal temporal intervals during which the two smartphones are co-located within

the temporal window [t − W, t] of size W 1: [s1, e1], [s2, e2], . . . , [sk, ek]. Let sk+1 =

s1 +W ; we have s1 < e1 < . . . < si < ei < . . . < sk < ek ≤ sk+1 = s1 +W .

At a particular moment m (t −W ≤ m ≤ t), the waiting time g(m) before the

next encounter between u and v is:

g(m) =

 0 ∃i, s.t. si ≤ m ≤ ei,

minsi≥m(si −m) otherwise.
(2.1)

Thus, we define the expected delay r(u, v) till next encounter between u and v at

time t as their reachability, computed by:

r(u, v) =

∫ sk+1

s1
g(m)dm

W
=

∑k
i=1(si+1 − ei)

2

2W
. (2.2)

As a special case, if the two smartphones are not co-located between t −W and t

(reflected by the lack of common intervals in l1 and l2 during that temporal window),

their reachability is defined to be +∞. The definition of reachability in Equation (2.2)

has implications (Lemma 1) on our design (Section 2.4)2.

Given a set of smartphones P = {u, v, w, . . .} along with their connectivity logs,

we define the reachability graph G(P ) of P to be a weighted undirected graph with

P as the vertices and r(u, v) as the weights on the edges between two smartphones u

and v. Given a threshold T , we define the filtered reachability graph GT (P ) to be the

subgraph of G(P ) consisting of all the vertices along with those edges with weights

no greater than T .

1Temporal window is used in the definition of reachability to phase out old information that may
be outdated. An example is that, for an employee who transferred from one department to another
two days ago, a temporal window W of 2 days will exclude the information before the transfer when
computing reachability.
2In Equation (2.2), we use

∫ sk+1

e1
g(m)dm, instead of

∫ t

t−W
g(m)dm, as the numerator; effectively, we

cut the temporal interval [t−W, s1] and paste it to the right of [t−W, t]; then we take an interval of
length W from the right to form the interval [s1, s1 +W ], i.e., [s1, sk+1]. This ensures the temporal
robustness of the reachability metric in Theorem 1 (more specifically, in Lemma 1).
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2.3 Design

2.3.1 Motivation: Prioritized Defense Deployment

Threat detection/mitigation in an enterprise network is an ongoing, rather than a

one-shot, process. Threat detection/mitigation mechanisms, such as malware detec-

tion and vulnerability patching, need to be deployed on BYOD smartphones and reg-

ularly updated to defend against evolving and emerging threats. Doing so constantly

on all BYOD smartphones is costly for the enterprise, and intrusive to the employees.

Random sampling is less costly and intrusive, but is oblivious to the temporal diver-

sity of BYOD employees’ connectivity patterns and, thus, presents challenges such

as how many and how often devices shall be checked for security vulnerabilities and

receive updates, as well as how to quantify the security provision.

Prioritized defense deployment addresses these challenges by assigning each BYOD

smartphone one of two mutually exclusive roles, agents and non-agents, according

to its security representativeness, and prioritizing the agents for defense mechanism

deployment. The use of the neutral terms (agent and non-agent) to differentiate the

security representativeness brings forth the essence of such distinction without con-

fining prioritized defense deployment to one narrow scenario. For example, in the

context of proximity malware attacks, prioritized defense deployment can support

strategic sampling for detecting malware, and prioritized patching for preventing/re-

covering from malware attacks.

• In strategic sampling, the agents resemble traditional Internet honeypots for

intrusion detection [165]: They attract and expose propagating malware. The

agents are periodically checked for malware infection by enterprise IT security

staff. Prioritized defense deployment will choose those security-wise representa-

tive smartphones as agents, and hence, provide a quantifiable security provision

for detecting malware.
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• In prioritized patching, the agents resemble the high-risk population (prior to

their immunization) and vaccine depot (after their immunization) in human

epidemiology: They are high-risk target of malware (prior to being patched

against the malware) due to their temporal-spatial importance in connecting

the network; they are also good deliverers of the security patches (after being

patched) for the same reason.

Strategic sampling is reactive, and prioritized patching is proactive: Whereas an

agent in the former waits for a co-located smartphone to infect it, an agent in the

latter actively distributes patches to co-located smartphones. Nevertheless, in both

applications of prioritized defense deployment, a smaller number of agents lowers the

sampling/patching cost for enterprise IT management, and reduces intrusiveness to

employees; it is, therefore, more desirable.

In this chapter, we propose T -dominance as an approach to implement prioritized

defense deployment. In the rest of the section, we define the concept of T -dominance

(Section 2.3.2) and design a localized and temporally robust algorithm for electing

a T -dominating agent set in a BYOD network for prioritized defense deployment

(Section 2.3.3).

2.3.2 T -dominance: The Concept

The concept of T -dominance is defined on the filtered reachability graph GT (P )

(Section 2.2) over a network of smartphones P as follows.

Definition 1 (T -dominance) Let P be a set of smartphones and A be a subset of

P called the agents. We say that the agents A T -dominates the smartphones P at

moment t if, for any u ∈ GT (P ), either u ∈ A or u is a neighbor of an agent a ∈ A

in GT (P ).

By definition, P trivially T -dominates itself. We are interested in a non-trivial A that

T -dominates P . For prioritized defense deployment based on T -dominance, a small

A is desirable.
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T -dominance quantifies the security provision in both strategic sampling and prior-

itized patching (Section 2.3.1). For example, consider that a Wi-Fi co-location-based

epidemic malware starts to propagate at the moment t.

In strategic sampling, if the agents T -dominate the network, it is highly likely

that one of the (T -dominating) agents will co-locate with an infected smartphone,

and thus, be infected before t+T . Thereafter, the infection will be detected the next

time the infected agent is checked. If the periodic check is scheduled at a cycle of

T , the epidemic is highly likely to be detected before t + 2T , which is controllable

by the choice of T . Comparing to both constant monitoring and random sampling,

strategic sampling through the T -dominating agents provides control over the trade-

off between cost/intrusiveness, in terms of the scale and frequency of the sampling,

and the security provision, in terms of the maximal detection delay.

In prioritized patching, when a piece of smartphone malware is detected or a

system vulnerability is uncovered, patches for preventing further exploitation can be

first issued to the agents at the moment t. The agents will then become immune to this

particular threat and will, therefore, slow down the malware’s epidemic propagation.

Furthermore, the agents can distribute the patches to their co-located smartphones.

T -dominance ensures that most BYOD smartphones will receive the patches by t +

T . Like in strategic sampling, prioritized patching through T -dominating agents

provides control over the trade-off between cost/intrusiveness, in terms of the scale

and frequency of the initial patching, and the security provision, in terms of maximal

patching delay.

2.3.3 T -dominance: The Algorithm

Now we have seen that the T -dominating agents serve a specific role in prioritized

defense deployment. In this section, we present a local algorithm that runs on indi-

vidual smartphones to elect agents without central coordination. The algorithm con-
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sists of two decision processes: activation and deactivation. We present deactivation

before activation, because activation contains deactivation as a sub-process.

2.3.3.1 Agents vs. Non-agents

Agents and non-agents differ in the amount of auxiliary information they maintain:

An agent keeps track of other smartphones it shares co-location opportunities with,

while a non-agent does not. The auxiliary information helps smartphones make in-

formed activation/deactivation decisions without central coordination; the differenti-

ation in the amount of maintained auxiliary information reduces prioritized security

deployment’s overhead for those non-agent smartphones. The auxiliary information

maintained by the agents includes co-located smartphones’ IDs, agent/non-agent sta-

tus, and connectivity logs; each record is time-stamped for later consolidation.

When two smartphones are co-located (or, meet) and at least one of them is an

agent, the agent will collect information from the other smartphone. When an agent

u meets another smartphone v, there are two scenarios.

• When agent u meets non-agent v, since a non-agent only maintains its own

auxiliary information, u can only obtain v’s own information from v. After the

meeting, u’s auxiliary information expands to include v.

• When agent u meets another agent v, they share information on other smart-

phones they directly met with. After the meeting, u’s auxiliary information

expands to include v and v’s direct acquaintance, as illustrated in Figure 2.2.

In both cases, agent u forms a filtered reachability graph GT (P ) from all the

phones P within its expanded scope, and takes the largest connected component

containing itself, GD(u), as its domination graph. Later operations will be conducted

on this domination graph GD(u).
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Figure 2.2.: After exchanging auxiliary information during their encounter, agent u’s
scope expands to include another agent v’s direct acquaintance and vice versa.

2.3.3.2 Deactivation

Each agent first collects at least a time window’s intelligence before it is eligible

for deactivation. When an agent u meets another agent v, and only after u has been

an agent for at least a temporal window W ’s time3, u makes a decision of whether

it will deactivate itself: A deactivated agent changes into a non-agent. Deactivation

reduces the number of agents and, hence, the overall sampling/patching cost and

intrusiveness of the deployed defense mechanism.

u makes its deactivation decision based on its domination graph GD(u). Let N(w)

be the neighbors of a vertex w in GD(u) and N [w] = N(w) ∪ {w} be the closed

neighbor set of w. Depending on the security context/corporate policy, u may choose

to be either aggressive or conservative in deactivating itself. Accordingly, we propose

two alternative rules that u can follow to decide whether to deactivate itself:

• Individual. u deactivates itself if there exists an agent w with higher priority

in GD(u) so that N [u] ⊆ N [w].

• Group. u deactivates itself if there exists a connected set of agents U in

GD(u), each of which has a higher priority than u, so that N [u] ⊆
⋃

w∈U N [w].

Such a U is said to be a replacement of u.

3The intuitive explanation for this is to let the agent be well informed before making a decision. We
provide a technical justification in Section 2.4.
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The definition of the two rules implies that agents under the Group rule are more

aggressive in deactivation that those under the Individual rule. The two rules provide

a trade-off between cost (in terms of number of agents) and responsiveness (in terms of

delay between malware infection and detection in strategic sampling, or between patch

release and distribution in prioritized patching) in a prioritized defense deployment

scheme. The requirement for connectedness in Group is to enlist the bridging nodes

in the BYOD smartphone network (such as an inter-departmental courier on a large

corporate site) for security defense due to their critical role in connecting the network

and, hence, higher chances of being attacked.

To complete the previous rules, u needs to decide whether w has a higher priority

than itself. Again, u can be either aggressive or conservative: There are two alter-

native criteria that u can apply to decide whether w has a higher priority than itself

(let N∩ = N(u) ∩N(w)):

• Strong. w has a priority higher than u if 1) N∩ 6= ∅; 2) ∃x ∈ N∩, r(x,w) <

r(x, u); 3) ∀x ∈ N∩, r(x,w) ≤ r(x, u).

• Weak. w has higher priority than u if 1) N∩ 6= ∅; 2)
∑

x∈N∩
r(x,w) <∑

x∈N∩
r(x, u).

By definition, if an agent decides that one of its peers has a higher priority than itself

under the Strong rule, it will reach the same conclusion under the Weak rule. Similar

to Individual and Group, Strong and Weak provide a trade-off between cost and

responsiveness in a prioritized defense deployment scheme. The absence of equivalence

in the second clauses in both criteria is to eliminate the case that a pair of agents

(wrongfully) assume that the other party will take over the responsibility for their

dominated nodes and, hence, deactivate themselves during the same encounter.

2.3.3.3 Activation

When an agent u meets a non-agent v, u makes the decision of whether it should

activate v.
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One possible strategy is to activate every co-located non-agent. Given enough

contact opportunities, such a strategy leads to an epidemic activation: Every smart-

phone gets activated at least once, no matter whether it is representative. However,

since some of the agents are to be deactivated later, a more discreet strategy is de-

sirable to avoid thrashing, i.e., employees’ smartphones get repeatedly activated and

deactivated in cycle, which consumes computational and energy resources on the

smartphones without much security benefits.

The insight is that a non-agent should be activated unless it is highly likely to be

deactivated later. Thus, the activation decision process comes down to measuring the

likelihood of the non-agent being deactivated later if it is activated now.

Let us consider how an agent u can decide whether to activate a non-agent v. The

activation process consists of two consecutive stages, deactiviablity and coverage.

Deactiviability. u computes a filtered reachability graph on its scope along with

that of v, and invokes the deactivation strategy for v on the graph (in other words, u

assumes v’s perspective and decides, if v is to make the deactivation decision, whether

v will deactivate itself). We say v is deactivable if the result (computed by Agent u)

turns out to be that v will deactivate itself.

If v is not deactivable, u will activate v and terminate the activation decision

process.

Otherwise, if u is deactivable, Agent v will proceed to the next stage.

Coverage. Let A(u) be the set of agents that u knows of (including u itself).

Agent u estimates v’s unique coverage contribution to A(u) and activates v with a

corresponding probability.

The unique coverage contribution of v to A(u) is those periods of time (within the

temporal window) that none of the agents in A(u) covers, but only v does.

Let the total length of v’s unique coverage be c(v\A(u)), and let the total length

of A(u)’s coverage be c(A(u)). u activates v with a probability:

1− exp(−c(v\A(u))
c(A(u))

). (2.3)
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Thus, the probability is close to 0 if v contributes little unique coverage (c(v\A(u))→

0) and is close to 1 if v contributes significant unique coverage ( c(v\A(u))
c(A(u))

→ ∞).

In other words, the more unique coverage v contributes, the more likely it will be

activated by u. The unique temporal coverage contribution of the newly activated

agent may help expose malware infection in strategic sampling or deliver patches in

prioritized patching.

2.3.3.4 T -dominance-based Prioritized Defense Deployment

By the activation and deactivation processes, a subset of the whole BYOD smart-

phone pool are elected as agents, and the rest are non-agents. Since the enterprise has

much less central control over employees’ BYOD devices than traditionally enterprise-

issued ones, the T -dominating agent set allows security measures to be prioritized

for those security-wise representative devices in order to reduce security mechanisms’

cost/intrusiveness under a quantified security provision. For example, during each

round of strategic sampling, an agent will have a higher probability of being sam-

pled than a non-agent; similarly, in prioritized patching, when a new vulnerability is

found, an agent will have a higher priority of being patched early than a non-agent.

Thus, prioritized defense deployment can be formalized as follows.

Prioritized defense deployment. In deploying a repeatedly executed/upgraded

defense mechanism, let the priority of, or the probability of deploying a security

mechanism in one round on, the agents and non-agents be p and q respectively.

Prioritized defense deployment is to have p > q.

A relatively small q reduces security overheads for those devices that have less

contacts with others and, therefore, are less likely to spread or be infected with

malware, while at the same time not completely neglecting the security of these

relatively reclusive devices.
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As a special case, p = 1 and q = 0: All the agents, and only the agents, are

sampled in each round in strategic sampling, or patched (directly by corporate IT

security staff) against each new vulnerability in prioritized patching. Suppose there

is a bounded maximal rate of sampling or patching (due to technological, economic,

or organization-political restriction), T -dominance-based prioritized defense deploy-

ment provides an ordering that favors more security-wise representative devices in

the sampling/patching request queue. In Section 2.5.2.2, we simulate this scenario

over real Wi-Fi association traces.

2.4 Analysis

In this section, we show that the algorithm presented in Section 2.3 satisfies a few

desirable properties.

A desirable algorithm should maintain the T -dominance structural property on

a BYOD smartphone network, or, in other words, be correct: The effectiveness of

strategic sampling and prioritized patching is contingent on the premise that the

delay (as estimated by the reachability metric) to reach most smartphones from the

agents through co-location is bounded by T .

Property 1 (Correctness) The T -dominance structural property is maintained by

the algorithm.

If an algorithm that implements T -dominance-based prioritized defense deploy

requires employees to forfeit their co-location records for centralized planning, the

algorithm will still be costly for the enterprise (due to the collection and central plan-

ning) and intrusive to the employees (due to the forfeiture). A distinction of a BYOD

enterprise network, in comparison with a traditional enterprise-issued device network,

is that it is more costly for the enterprise to provide security support the diverse

set of devices and that the employees are more reluctant to intrusive security mea-

sures initiated by the enterprise (since, by definition, they belong to the employees).

A key idea of prioritized security deployment is the observation that what matters to
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the enterprise is that which BYOD smartphones are representative security-wise (so

that they will be prioritized for security mechanism deployment), rather than the de-

tailed co-location information; employees may prefer not going through the chore of

periodically updating with the enterprise about their whereabouts, but only sharing

the information locally with co-located smartphones when needed. Thus, a desirable

algorithm should be localized.

Property 2 (Localization) An agent makes its activation/deactivation decisions

based on its own status and the connectivity logs from other smartphones it co-locates

with.

While localization (Property 2) decentralizes information collection process among

opportunistically co-located smartphones, the information collected by agents about

its past co-located neighbors may be outdated, and the reachability computed from

such information may be different from the actual one at that moment. Requiring

employees to constantly or on-demandly update such information with their neighbors

induces great overheads and, therefore, negates the benefits of decentralization. Thus,

a desirable algorithm should be able to handle outdated information while electing

agents for prioritized defense deployment.

Property 3 (Temporal robustness) Property 1 is achieved even if the connectiv-

ity logs obtained from other smartphones during Wi-Fi co-location is outdated.

In the rest of the section, we will show that the algorithm presented in Section 2.3

satisfies the Properties 1–3. Because only Deactivation (Section 2.3.3.2) may violate

the properties, and Group-Weak is the most aggressive deactivation rule, we prove, in

Theorem 1, that all three properties are satisfied by the design under the Group-Weak

rule; the cases for other less aggressive deactivation rules are corollaries to Theorem 1.

In addition, we complement our analysis here with simulations on real AP-association

traces in Section 2.5.



www.manaraa.com

19

Theorem 1 If an agent a deactivates itself in its local (and potentially outdated)

view at the moment t, then, in the global (and updated) view, each of the smartphones

T -dominated by a, including a itself, is still T -dominated by some agent at t.

We break the proof of Theorem 1 down to a series of lemmas. Before proceeding,

we need to make some extension to the notation to be more precise. The reachability

metric, as defined in Equation (2.2) for two smartphones u and v, are actually defined

on snapshots of u and v connectivity logs lu and lv, respectively. Therefore, we make

this explicit by writing r(lu, lv) in place of r(u, v).

Lemma 1 is a property of the reachability metric defined in Equation (2.2).

Lemma 1 Let lu and l′u (lv and l′v) be two snapshots of the connectivity log of smart-

phone u (v). If the common intervals of l′u and l′v are all contained in those of lu and

lv in the temporal window [t−W, t], then:

r(lu, lv) ≤ r(l′u, l
′
v).

Proof In the same notation in Equation (2.2), let the common intervals of lu and lv

within the window [t−W, t] be [s1, e1], . . . , [sk, ek]; sk+1 = s1+w. By Equation (2.2),

r(lu, lv) =
∑k

i=1(si+1 − ei)
2
/
2W.

Since the common intervals of l′u and l′v are all contained in the common intervals

of lu and lv in the temporal window [t − W, t], the common intervals of l′u and l′v

within the window [t −W, t] can be represented as [si, ei], [si+1, ei+1], . . . , [sj, ej] for

some 1 ≤ i ≤ j ≤ k. By Equation (2.2), r(l′u, l
′
v) =

∑j
n=i(s

′
n+1 − e′n)

2
/
2W.

We have:

r(l′u, l
′
v)− r(lu, lv) =

[
(si +W − ej)

2−
i−1∑
n=1

(sn+1 − en)
2 −

k∑
n=j

(sn+1 − en)
2

]/
2W.

(2.4)
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Since s1 < e1 < . . . < si < ei < . . . < sj < ej < . . . < sk < ek < sk+1 = s1 +W ,

i−1∑
n=1

(sn+1 − en)
2 +

k∑
n=j

(sn+1 − en)
2

≤

[
i−1∑
n=1

(sn+1 − en)

]2
+

[
k∑

n=j

(sn+1 − en)

]2
≤(si − e1)

2 + (sk+1 − ej)
2

≤(si − e1 + sk+1 − ej)
2 = (si − e1 +W + s1 − ej)

2

≤(si − s1 +W + s1 − ej)
2 = (si +W − ej)

2.

(2.5)

By Equations (2.4) and (2.5), r(lu, lv) ≤ r(l′u, l
′
v).

In the following discussion, we use ltu(v) to denote the snapshot of smartphone v’s

connectivity log stored on an agent u (only agents store other smartphones’ connec-

tivity logs) at time t, or in other words, u’s local view of v at t. By definition, ltu(u)

is u’s latest connectivity log at t, which is exactly u’s connectivity log at t from the

global view; therefore, we write ltu(u) simply as ltu. We use ltu(u) and ltu in different con-

texts to emphasize the different perspectives: The former is from u’s local view, and

the latter is from the global view.

Lemma 2 shows that, after collecting a window’s intelligence, an agent’s local view

on the set of smartphones that is T -dominated by it agrees with the global view. This

is the technical justification for requiring an agent to collect a window’s intelligence

before deactivating itself.

Lemma 2 Suppose a is an agent during [t − W, t]. For each smartphone u with

r(lta, l
t
u) < +∞, we have

r(lta(a), l
t
a(u)) = r(lta, l

t
u).

Proof Since r(lta, l
t
u) < +∞, by Definition (2.2), a has met u at least once during

[t−W, t]; since a is an agent during [t−W, t], lta = lta(a) includes a record on the last

meeting between a and u. Thus, the common intervals of lta(a) and lta(u) are exactly
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the same with those of lta and ltu in the temporal window [t −W, t]. By Lemma 1,

r(lta(a), l
t
a(u)) ≤ r(lta, l

t
u) and r(lta(a), l

t
a(u)) ≥ r(lta, l

t
u). Hence r(lta(a), l

t
a(u)) = r(lta, l

t
u).

Proof [Proof of Theorem 1] a deactivates itself at t if a is an agent during [t−W, t]

and finds, in its local view, a group of agents A with higher priorities, so that each

smartphone T -dominated by a (including a itself) is T -dominated by at least one

agent from A.

By Lemma 2, a’s local view on the set of smartphones T -dominated by itself

agrees with the global view. Hence, we only need to show that a non-agent u, which

is T -dominated by both a and another agent v ∈ A at t in a’s local view, is actually

T -dominated by some agent at t in the global view.

The proof is concluded if a’s local view on v agrees with the global view. However,

two possible discrepancies between a’s local view and the global view demands further

discussion: connectivity log and agent status of v.

The first case is straightforward to resolve. Suppose v is still an agent at t in

the global view. Since lta(u) and la(v) are past snapshots of ltu and ltv respectively,

the common intervals of lta(u) and la(v) are all contained in ltu and ltv in the temporal

window; by Lemma 1, r(ltu, l
t
v) ≤ r(lta(u), l

t
a(v)). Since u is T -dominated by v in a’s

local view, we have r(lta(u), l
t
a(v)) ≤ T . Thus, r(ltu, l

t
v) ≤ T : u is T -dominated by the

agent v at the moment t in the global view.

The latter case is more involved. Suppose v is no longer an agent at t in the

global view. v must have deactivated itself and delegated the dominance of u to a

replacement w at an earlier time t′ < t after the last encounter between a and v (w

must be an agent at the moment t′ for this to happen). Thus, lta(v) is a past snapshot

of lt
′

v(v). Since lt
′

v(u) contains all the encounters between u and v up to the moment t′,

the common intervals of lta(u) and lta(v) are all contained in those of lt
′

v(u) and lt
′

v(v), thus

r(lt
′

v(u), l
t′

v(v)) ≤ r(lta(u), l
t
a(v)) ≤ T by Lemma 1.

Since v deactivated itself at t′ for w, r(lt
′

v(u), l
t′

v(w)) ≤ r(lt
′

v(u), l
t′

v(v)) ≤ T . Since lt
′

v(u)

and lt
′

v(w) are both past snapshots of ltu and ltw, the common intervals of lt
′

v(u) and lt
′

v(w)

are contained in those of ltu and ltw, thus r(ltu, l
t
w) ≤ r(lt

′

v(u), l
t′

v(w)) ≤ T by Lemma 1.
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That is to say, even though v may be deactivated at t, u is still T -dominated by the

agent w delegated by v.

Thus, by the same argument on v’s replacement w at t′, even if v has deactivated

itself by t, either the replacement w actually T -dominates u at t, or it has further

delegated u to other agents at an earlier time. By tracing back this chain of delegation,

we can eventually find, in the global view, an agent that T -dominates u at t.

We now show that there is no loop in the chain of delegation. Along with the

fact T ≥ r(lta(a), l
t
a(u)) ≥ r(lta(u), l

t
a(v)) ≥ r(lt

′

v(u), l
t′

v(v)) ≥ r(lt
′

v(u), l
t′

v(w)) ≥ . . . we have just

proved, the non-equality requirement in the priority comparison rule ensures that

there is no loop in the chain of delegation.

2.5 Experiment

We complement our analysis on T -dominance with simulations driven by real-

world collected datasets.

2.5.1 Dataset and Methodology

The dataset is from the Wireless Topology Discovery (WTD) project [139]. The

dataset consists of traces collected from over 190 UC San Diego freshmen using hand-

held mobile devices for an 11-week period. Periodic Wi-Fi AP scanning and asso-

ciation results were recorded every 20 seconds. The students participating in this

experiment, though coming from different majors, resided in the same university

housing facility. This setting resembles the arrangement in a large enterprise site,

with employees working in their designated office spaces (corresponding to students’

dormitories). The traces capture the mobility and connectivity patterns of a group

of users in a relatively short period of time [139].

Given the frequency of data recording (once every 20 seconds), we transformed the

periodic records into a series of sessions (a session is defined as a device associating
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with an AP during a period of time) by the following method: Consecutive records

of the same device associating with the same AP within 20 seconds were combined

to form a single session.

The transformed traces were then fed into an event-driven simulator implemented

in Perl. Each session in the transformed traces triggers two events along the time

line: an association event and a de-association event. We took the first 200 thousands

entries in the records and used the first 30% of the data for the 190 nodes to accu-

mulate connectivity logs, which allowed them to simulate the agent election process

later. Then, some nodes were randomly selected as initial agents; the agents made

activation/deactivation decisions, based on the algorithm specified in Section 2.3. In

the following scenarios, the simulation process was repeated with different psuedo-

random number generator (PRNG) seeds to obtain the means and quartiles.

2.5.2 Scenario and Results

2.5.2.1 T -dominating Agent Election

We simulated the agent election process under the different T -dominating strate-

gies (Group-Strong, Group-Weak, Individual-Strong, and Individual-Weak) with dif-

ferent numbers of initial agents and T . Since for a given set of initial agents, no

proximity-based activation strategy can activate more agents than the epidemic one

(the epidemic strategy is one in which agents unconditionally activate their co-located

neighbors), we normalized the results with the epidemic strategy to make them com-

parable: At a particular moment, the number of agents elected by a T -dominance

strategy is divided by the number of agents activated by the epidemic strategy, to

obtain the normalized agent set size. We computed the means of the results from

multiple rounds of simulation, with different PRNG seeds, to account for the poten-

tial bias introduced by a peculiar initial setting. Figure 2.3 shows a representative
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result with 5, 10, and 15 initial agents (out of the 190 nodes) with T = 18, 000s (5

hours). The following are a few notes on Figure 2.3:

• In terms of agent set reduction through self-deactivation, Group-Weak is the

most aggressive strategy, and Individual-Strong is the most conservative one,

while the other two come in between, and are comparable. This confirms our

design intuition in Section 2.3.

• The size of the initial agent set has little influence on the size of the agent set

eventually elected. The small differences are mostly at the beginning of the

process and are difficult to notice without zooming in. One explanation is that

this dataset, like in many closed-world networks such as in an enterprise, is well

connected: Except for maybe a few peculiar cases, an agent election process

originating from a small set of agents spreads to the whole network quickly; the

activation/deactivation process since that moment will then converge.

• An agent election process election process consists of two consecutive phases.

The first phase (0 to around 5000 seconds in Figure 2.3) corresponds to the

general trend of decreases (with occasional small increases) in normalized agent

set size (NASS), and reflects the overwhelming effect of deactivation in search of

the T -dominating agent set. The second phase (after 5000 seconds in Figure 2.3)

is characterized by the dynamic balance between activation and deactivation

when the T -dominanting agent set has been activated.

2.5.2.2 Prioritized Defense Deployment

We simulated prioritized defense deployment based on the T -dominance-elected

agents. We consider the following scenario. Following the election of T -dominating

agents as in Figure 2.3, the elected agents were periodically checked for malware

infection; once an infection is detected, the infected agent would enroll itself, along
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Figure 2.3.: A representative T -dominating agent election process with 5, 10, and 15
initial agents (out of the 190 nodes) and T = 18, 000s (5 hours). Agent set size
is normalized by epidemic activation strategy: the y-axis is shown in normalized
agent set size (NASS). Strategy notations: gs (Group-Strong), gw (Group-Weak), is
(Indivdual-Strong), iw (Individual Weak).

with the non-agents T -dominated by it, in a malware patching pool. For simplicity,

we considered the case in which there was no delay in detecting agent infection: The

agents were constantly monitored for malware infection.

Independently, a smartphone was randomly selected from the patching pool at the

rate of once every ten seconds and, if the smartphone was indeed infected, it would

be patched. Patched smartphones would then become immune to malware infection.

We compared the T -dominance-based prioritized defense deployment, instantiated

by this strategic sampling/patching (strategic s/p) strategy, with a random sam-

pling/patching (random s/p) strategy. The latter periodically selected a smartphone

randomly for malware infection checking, at the same rate as in the prioritized defense

deployment (i.e., once every ten seconds). If the selected smartphone was indeed

infected, it would be patched immediately.

We considered both epidemic and static malware models, which correspond to

proximity malware attacks and drive-by download attacks, respectively. We assumed

that an agent could detect malware infection in co-located smartphones, and, if mal-

ware infection was detected, would enroll its T -dominating smartphones in the mal-

ware patching pool.
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Figure 2.4.: Delay from the malware breakout to the first patching of a malware-
infected smartphone. The patching rate is once per ten seconds. The row heading
shows initial agent number before malware election; the column heading shows the
number of malware-infected smartphone at the malware breakout. Strategy notation:
er (epidemic malware, random sampling/patching), es (epidemic malware, strategic
sampling/patching), sr (static malware, random sampling/patching), ss (static mal-
ware, strategic sampling/patching). The y-axis is shown in a log10 scale.

Boxplots of the results4 are shown in Figures 2.4 and 2.5 for different numbers

of initial agents (corresponds to the value in Figure 2.3) and initial malware-infected

smartphones.

Figure 2.4 shows the delay between the initial malware outbreak and the first

patching of a malware-infected smartphone. A few notes on Figure 2.4:

• Strategic s/p has a shorter delay than random s/p. In other words, the former is

more responsive to malware infection than the latter. This justifies the adoption

of T -dominance for prioritized defense deployment: By having an agent set that

T -dominants the whole smartphone pool to serve as sampling points, malware

outbreaks will be detected more promptly.

4Boxplots [138] show the max/min, 75%/25% quartiles, and the median of a group of observations.
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Figure 2.5.: Average malware number. The notations are the same as in Figure 2.4.

• The delay under the static malware model with small numbers of initial malware-

infected smartphones is relatively long; the delay under the epidemic malware

model with large numbers of initial malware-infected smartphones is relatively

short. The explanation is that more smartphones will be infected by the mal-

ware shortly in the latter case, so initial sampling and ensuing patching will

take less time than the former case.

Figure 2.5 shows the number of malware-infected smartphones averaged through

the whole infection process (from the malware outbreak to the moment that all

malware-infected smartphones were patched). A few notes on Figure 2.5:

• Under the epidemic malware model, T -dominance-based strategic s/p has sig-

nificant less average malware infections than that of random s/p: A typical

number of average infections is 3 for strategic s/p and 13 for random s/p. The

difference is even more pronounced when there are more initial malware infec-

tions as in the upper rightest column with 15 initial infections.

• Even under the static malware model, where the malware would not propa-

gate from infected smartphones to others and, hence, the average number of
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malware-infected smartphones over time shall be less than the initial number,

the strategic s/p based on the T -dominating agent set has 1 to 3 less average

infections than the random s/p.

Results shown in Figures 2.4 and 2.5 collectively show the responsiveness and

effectiveness of T -dominance-based prioritized defense deployment, as instantiated

by the strategic s/p, in detecting and mitigating BYOD smartphone malware.

2.6 Extended Discussion

Currently, we are not aware of any real-world report of smartphone malware prop-

agating through Wi-Fi co-location. However, this does not mean that the attack

model is purely hypothetical or impractical. For example, a report [122] on hijacking

hotel Wi-Fi hotspots for drive-by malware attacks on laptops comes close to what

we have in mind; practical man-in-the-middle attacks against Wi-Fi co-located de-

vices was demonstrated in a recent BlackHat security conference [198]. We note that

enabling environments and techniques for Wi-Fi co-location-based smartphone mal-

ware are already in place.

• Given the complexity of the commercial smartphone software platforms and the

diversity of security awareness and experience of application developers, it is

reasonable to believe that remote exploitable vulnerabilities will be discovered

and exploited.

• The privilege authorization frameworks on smartphone platforms, which sup-

posedly prevent the malware from obtaining unwarranted privilege, are often

ignored for convenience, or circumvented for customization by the users. Rootk-

its, like iOS Jailbreak5, are routinely used by users for installing third-party

applications, whose trustworthiness is often assumed, but not verified.

5http://www.jailbreakme.com/

http://www.jailbreakme.com/
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• Commercially-available Wi-Fi honeypots like Wi-Fi Pineapple6 enable DNS

spoofing, ARP poisoning, and man-in-the-middle attacks.

• The concentration of mobile application development on the two major smart-

phone platforms (iOS and Android) greatly reduces device heterogeneity, and

thus, makes malware epidemics possible.

Given these considerations, Wi-Fi-co-location-based smartphone malware is likely to

emerge in the near future; even worse, such malware may have already been deployed

in the real world. This makes the study in mitigating it for a comprehensive BYOD

network security model relevant and worthwhile.

2.7 Related Work

Although BYOD features numerous recent IT industry analyses and news reports

as one prominent enterprise IT trend in the coming years [98, 166, 24], academic

studies on the security implications of BYOD are scarce and still at an early stage [141,

195, 159]. One explanation is that while it is agreed that BYOD brings many benefits

as well as management/security challenges, approaches to modeling and resolving the

challenges are still being explored. In this chapter, we identify the tension between

security provision and employee intrusiveness/security mechanism deployment cost as

one of the challenges for BYOD security and propose prioritized defense deployment

as a solution.

Proximity malware has been studied previously in the context of sensor, ad hoc,

P2P, or mobile networks, with a focus on either identifying the critical point for long-

term malware survival/extinction under various epidemiological models [42, 201, 160],

or extracting and exploiting mobility pattern and community structure for malware

mitigation [83, 126, 125]. Studies on Android, one of the dominating smartphone

software platforms, show that many mobile applications are vulnerable to attacks

6http://hakshop.myshopify.com/products/wifi-pineapple

http://hakshop.myshopify.com/products/wifi-pineapple
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and malware on the Android smartphone software platform [74, 92, 198] and that

malware is rampant [236].

The fascinating topic of capturing temporal dynamics in complex networks is

studied by many previous works, often in the context of human mobility patterns

captured by telecommunication service traces [190, 193, 118]. T -dominance is our

attempt to capture the temporal dynamics in the BYOD enterprise environment.

The exploitation of temporal dynamics for mitigating BYOD malware threat is novel.

The T -dominance algorithm is inspired by previous works on the Connected

Dominating Set (CDS) problem of topology and routing in ad hoc and sensor net-

works [213, 220, 177]. However, the interpretation of CDS for temporal dynamics, the

application in electing security-wise representative nodes in a BYOD network, and

the issue of temporal robustness are all novel.

2.8 Summary and Future Work

Evidence indicates that many enterprises have adopted or are considering adopt-

ing a BYOD IT policy. However, research on BYOD enterprise network security is

still at an early stage; many issues are yet to be clearly identified. In this chapter,

in the context of smartphone malware attacks and widely deployed enterprise Wi-Fi

infrastructures, the tension between security provision and intrusiveness/cost is iden-

tified as one such issue; prioritized defense deployment based on security represen-

tativeness is one approach to address the tension; prioritization by temporal-spatial

structure through T -dominance is one interpretation of security representativeness.

Other issues/approaches/interpretations are to be explored.

Independent from the application of T -dominance in prioritizing defense deploy-

ment, we briefly discuss the possibility of abusing T -dominance in making BYOD

malware attacks stealthy. This shows, from another perspective, the importance of

understanding the temporal-spatial structure for BYOD enterprise network security.

For example, a study on the competition between a strategic sampling/prioritized
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patching scheme and an instance of stealthy malware, running the T -dominance al-

gorithm with different T , would be interesting.
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3 THE VIRTUE OF PATIENCE: OFFLOADING TOPICAL CELLULAR

CONTENT THROUGH OPPORTUNISTIC PROXIMATE LINKS

The application of opportunistic proximate links considered in this chapter is to of-

fload cellular data traffic through proximate channels. The motivation behind this

application is the observation that the cellular channel is often congested and costly

in the current telecommunication service economic model, whereas proximate links

are often under-utilized. This chapter considers a topical content distribution model

with bounded content delivery delay tolerance, in which users subscribe to various

topics of content, and the objective is to deliver a piece of content to its subscribers

before its expiration. The challenge is to achieving the objective cost-effectively with-

out costly central coordination/planning over cellular channel. The essence of this

chapter is for each individual smartphone to aggregate its user and the user’s oppor-

tunistic neighborhood’s interest profile over proximate channel into a time-dependent

metric called “patience,” and locally follows a probabilistic cellular download algo-

rithm periodically using the patience metric and according to the situation whether

it has received the content or not.

This chapter is previously published as a conference paper [154] in IEEE Interna-

tional Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2013.

3.1 Introduction

The cellular infrastructure is overloaded by an expanding user base and increas-

ing bandwidth demand from smartphone applications. Indeed, driven primarily by

smartphones, AT&T’s wireless data traffic has grown 200 folds over the five years be-

tween 2007 and 2011 [64].
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Mobile data offloading, or mobile cellular traffic offloading, exploits alternative

communication technologies on smartphones, and user mobility, to deliver information

originally scheduled for transmission over the cellular networks. Previous works [94,

95, 96] demonstrate the feasibility of offloading cellular traffic by peer-to-peer assisted

forwarding through Bluetooth. Recent developments in communication technology,

embodied in the smart mobile devices (e.g., Google Nexus 7 [27] and the iPhone

5 [174]) that support NFC [146] and Wi-Fi Direct [210], makes spontaneous bulk data

transfers between proximate users a reality. Furthermore, the current data usage cap

and tiered pricing model [212] incentivizes smartphone users to offload their cellular

data. These developments make further research in mobile data offloading relevant

and worthwhile.

In this chapter, we study the problem of offloading cellular traffic through oppor-

tunistic proximate links such as Wi-Fi Direct. In our model, we include a factor that

was missing in existing mobile data offloading models: users’ interests in content.

Users’ interests are particularly relevant for large-scale networks: Nobody desires (or

is able) to consume all generated content. This lies behind the quest for better search

engines and the rise of social taxonomy, or folksonomy, in tagging content. Addition-

ally, we consider bounded delivery-delay tolerance to model the general case where

the content, though having no hard real-time requirement, still needs to be delivered

before too long, lest it becomes stale.

Figure 3.1 illustrates the complication brought by users’ interests: When a, b, and

c meet through a proximate link and if, due to limited budget, one and only one of

them will download a piece of content through the cellular link: Who, among them,

should download? Though b has more acquaintances than a does and therefore, in

some sense, is more socially important, few of b’s acquaintances are interested in the

content, when compared with those of a: It is more cost effective for a to download

and carry the content than b. In another comparison, c is more socially important

than a, and most of c’s acquaintances are interested in the content: Though c is not

interested in the content, if c downloads and carries the content, c can serve more
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a
a c

b

b

c

Figure 3.1.: Users’ interests in content complicate the offloading strategy. Shaded
nodes represent interested users; solid lines link acquaintances; dashed lines and nodes
represent nodes’ mobility.

users within a reasonable time than a can. In general, a cost-effective offloading

strategy involves an interplay between users’ interests and their social importance.

In addition to deciding who shall download the content through cellular links, as

in the target-set selection formulation [96], we ask when. To appreciate the benefits

of including time in the model, we consider a few scenarios.

• Every user downloads his1 interested content through the cellular link imme-

diately after the content is released. No offloading through the proximate link

takes place in this case. This is the baseline diligent strategy that mobile data

offloading measures against.

• Every user initially waits, in the hope that someone will download the content

and forward the content (through the proximity link) to him through one of

his acquaintances. However, nobody will receive the content, since nobody has

downloaded it. Even if the content is eventually downloaded by some random

user, and is forwarded to other interested users, it may have expired. This is

the lazy strategy that introduces an unacceptably long delay.

• Some well-connected, or socially important, users, whose acquaintances are in-

terested in the content, download the content through the cellular link, and for-

1“He” (“his”) is to be read “he/she” (“his/her”) henceforth.
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ward the content to their acquaintances when they meet through the proximate

link. As time passes by, and the risk of the content becoming stale increases,

those users who have not received their interested content through either link

become impatient in waiting, and eventually download the content through the

cellular link if the content has still not been received after a long delay. This

adaptive strategy is neither too diligent nor too lazy, and provides a trade-off

between cellular traffic load and content delivery delay.

A challenge is to design such an adaptive strategy without resorting to central

scheduling and coordination through the cellular link, which is costly and less scalable.

Although human mobility exhibits patterns [91, 182], contact opportunities are hard

to predict precisely. Therefore, effective central scheduling and coordination require

prohibitively costly updating.

We address the challenge as follows. Users estimate their relative social impor-

tance in the dynamic, opportunistic, proximity-link-based network with a weighted

ego-centric betweenness centrality metric (Equation (3.2)); users estimate their (and

their acquaintances’) aggregated interests (Equation (3.3)) based on their chances of

meeting each other (Equation (3.1)); users use a function (Equation (3.4)), which

embodies the concept of users’ patience for the content, to consolidate users’ so-

cial importance with aggregated interests. This function gives rise to a probabilistic

cellular offloading strategy (Equation (3.5)) that assigns a cellular download proba-

bility to a user, according to his capability to help offload the topical cellular content.

Users then periodically decide whether to download the content through the cellular

link by their patience at that time.

Thus, our solution is social, content, and situation-aware: Involving topologically

important, but otherwise disinterested, users in downloading and forwarding content

will help reduce the cellular traffic and improve the offloading efficiency, while satis-

fying users’ content demand.

In the following sections, we formulate the problem (Section 3.2), describe the

design of our patience-based cellular offloading strategy (Section 3.3), analyze its
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properties (Section 3.4), and complement the analysis with trace-driven simulations

(Section 3.5). Works that inspire ours are summarized in Section 3.6.

3.2 Model

Consider a group of smartphone users: Each user has a smartphone that can

access the Internet through the cellular link, and connect with nearby smartphones

through some proximate link. For example, Bluetooth is the current standard for

linking proximate devices: Han et al. evaluated and confirmed the feasibility of using

Bluetooth to offload cellular data [96]. Other possibilities include Wi-Fi co-location

(two users connect to the same Wi-Fi access point) and the upcoming Wi-Fi Direct.

The cellular link is persistent but expensive, while the proximity link is opportunistic

but free: A smartphone can access the Internet immediately on demand through

the cellular link, while two smartphones can connect with each other through the

proximate link only when they are nearby. An opportunity for two smartphones to

connect through the proximate link is an encounter between them.

The users are interested in some content that is generated and released by some

publisher on the Internet. Each piece of content is tagged before its release. We model

two aspects of the user-content relationship: users’ interests and content’s freshness.

For a user u:

• The interests of u are represented by a set of tags Iu: u is interested in a piece

of content if the content has a tag in Iu.

• For a tag g, u prefers to receive a piece of content with tag g, within a delay

of up to fg. Otherwise, if u has not received the content within that time, the

content becomes stale for u. We call fg the freshness of tag g.

The publisher publishes an aggregate feed, containing the summary, the tags, and

the download link for each piece of released content. A user is notified through the

feed when new content is released.
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The problem is to find a localized strategy that minimizes the number of cellular

downloads (which incur costs) while maximizing fresh content deliveries. A localized

strategy is one in which each user makes decisions based on information obtained

through encounters rather than requiring (global) coordination through the cellular

link. Communication through cellular link incurs cost, and keeping track of local

changes for global coordination aggravates the problem. In comparison, a localized

strategy is cost-effective and adaptive. The decisions to be made include whether to

download a piece of content through the cellular link and, if the answer is yes, when.

Before moving on to describe the concrete design, we make our assumptions ex-

plicit. Since the proximate link is virtually free, routing on the proximity-link-based

network is not a focus of this chapter: To maximize coverage, the content is epi-

demically forwarded across the opportunistic proximity-link-based network once it is

downloaded through the cellular link. A more sophisticated forwarding strategy [124]

can be adopted, but is beyond the scope of this chapter. The users are honest and

cooperative. In other words, each user will follow the protocols by honestly sharing

information and cooperatively reducing the overall cost:

• A user will honestly report their interests to others upon request.

• If downloading, storing, and forwarding a piece of content will reduce the overall

cellular cost of the whole network, a user will do it even if he is not interested

in the content.

Enforcement and incentive [212, 238, 152], while important, are orthogonal to the

current problem and are left for further studies.
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3.3 Design

3.3.1 Overview

Intuitively, two groups of users are favored for directly downloading a piece of

content with tag g through the cellular link:

• Those who are interested in g and meet with users who are interested in g;

• Those who are socially important, or equivalently, topologically important in

the dynamic proximity-link-based network.

The rationale for favoring the first group is obvious: Those users have better chances

of directly obtaining or forwarding the content to interested users. However, the scope

of this case is restricted to direct acquaintances and is thus oblivious of the topology

of the proximity-link-based network, for which the second case tries to remedy. The

membership in the two groups may overlap; those who are members of both groups

are favored over those who are members of only one group.

Concretely, a user decides his topological importance in the dynamic proximity-

link-based network by locally computing his weighted ego-centric betweenness cen-

trality (Section 3.3.3). Along with the aggregated interest of both himself and his

acquaintances (Section 3.3.4), the user determines his patience for the content and

periodically decides, with a temporal-dependent probability based on his patience,

whether to download the content through the cellular link if he has not yet received

the content (Section 3.3.5).

In this section, we focus on the design details. Discussions on intuition and ratio-

nale are deferred to Section 3.4.

3.3.2 Temporal Tie Strength

Let the set of users that u has met through the proximate link be Uu: Uu is the

set of u’s acquaintances. For v ∈ Uu, let the chronologically ordered sequence of
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encounters between u and v be [a1, b1], [a2, b2], . . . , [ak, bk], and the current time be t;

the average interval between consecutive encounters ŝu(v) is defined as:

ŝu(v) =


(t− bk) +

∑k−1
i=1 (ai+1 − bi)

k
u and v have met.

+∞ otherwise.

By definition, ŝu(v) is symmetric: ŝu(v) = ŝv(u); ŝu(v) ≥ 0; u can locally compute

ŝu(v) for all v ∈ Uu.

Based on ŝu(v), the temporal tie strength (tie for short) su(v) is defined as:

su(v) =

exp(−αsŝu(v)) su(v) ∈ [0,+∞),

0 su(v) = +∞,

(3.1)

in which αs > 0 is a scaling parameter, adapting to the given scenario, to prevent

the tie su(v) from dropping too fast with the increase of the average inter-encounter

interval ŝu(v).

Greater su(v) corresponds to stronger tie between u and v; su(v) ∈ [0, 1]. Like

ŝu(v), su(v) is symmetric: (su(v) = sv(u)) and u can locally compute su(v) for all

v ∈ Uu.

3.3.3 Weighted Ego-centric Betweenness Centrality

For v, w ∈ Uu, u can obtain ŝu(v), ŝu(w), and ŝv(w) (or, equally, ŝw(v)) dur-

ing their encounters. u can construct his neighborhood graph Gu, of which nodes

are {u} ∪ Uu and the edge between v, w ∈ Uu ∪ {u} has a weight ŝv(w) = ŝw(v) if

ŝw(v) 6= +∞. For v, w ∈ Uu and v 6= w, let p(v, w) be the proposition “(v, u, w) is a

shortest path between v and w”; this can be determined by, for example, the Dijk-



www.manaraa.com

40

stra’s algorithm [113]. From Gu, u can compute a weighted ego-centric betweenness

centrality βu:

βu =


∑

v,w∈Uu,v 6=w

[p(v,w)]

2
(|Uu|

2

) |Uu| ≥ 2,

0 otherwise.

(3.2)

In Equation (3.2) and the following, when p is a proposition, the notation [p] is the

propositional indicator function:

[p] =

1 p is true,

0 p is false.

From Equation (3.2), βu ∈ [0, 1].

3.3.4 Interest Aggregation

User u records the interests Iv of user v when they meet. u’s aggregated interest

iu(g) on tag g is:

iu(g) = [g ∈ Iu] +
∑
v∈Uu

su(v)[g ∈ Iv]. (3.3)

iu(g) ≥ 0; iu(g) < 1 only if g /∈ Iu.

3.3.5 Patience and Probabilistic Cellular Downloading Strategy

From the centrality βu (Equation (3.2)) and aggregated interest iu(g) on tag g

(Equation (3.3)), u determines his patience pu,g for tag g as a function:

pu,g : [0, 1]→ [0, 1], (3.4)
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defined as (for two scaling parameters αi > 0 and αβ > 1, which correspond to the

interest aggregation iu(g) and the centrality βu, respectively):

pu,g(x) =


(
1− e−αiiu(g)

)
xα

(1−2βu)
β g ∈ Iu,(

1− e−αiiu(g)
)
(1− x)α

(1−2βu)
β g /∈ Iu.

(3.5)

The patience function defined by Equations (3.4) and (3.5) gives u a strategy

to make cellular download decision. u, according to the strategy and based on the

situation at that time (Have u received the content? How close to the content ex-

piration?), periodically (at a pre-defined interval for all users) makes a probabilistic

cellular download decision as follows. At the moment t+x ·fg (x ∈ [0, 1]) between the

time t that u first learns about a piece of content with tag g and the time t+ fg that

the content becomes stale for u, u flips a biased coin and, with a probability pu,g(x),

downloads the content through the cellular link. As a stipulation, if u is interested

in the content himself, but has neither downloaded nor received the content by the

time t + fg, u will download the content directly through the cellular link to satisfy

his content demand.

3.4 Analysis

3.4.1 Probabilistic Cellular Downloading Strategy Based on Patience

We take the patience function pu,g(x) defined in Equation (3.5) apart:

• The maximal probability that u will download the content through the cellular

link in one round is 1 − e−αiiu(g), which is monotonically increasing on iu(g):

Greater aggregated interest iu(g) corresponds to higher maximal cellular down-

loading probability.
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Figure 3.2.: The patience function pu,g and the scaling parameters αi (interest iu(g))
and αβ (centrality βu). (a) Given the scaling parameters αi and αβ, the patience pu,g
function is jointly determined by the aggregated interest iu(g) and the centrality βu.
For αi = 1 and αβ = 2, the patience functions corresponding to the 12 (3 × 2 × 2)
combinations iu(g) = 0.29, 0.69, 1.39 (corresponding to 1− e−αiiu(g) = 0.25, 0.50, 0.75;
blue, red, green), βu = 0, 1 (dashed, solid), and the cases g ∈ Iu, g /∈ Iu (increasing,
decreasing) are plotted for comparison. (b) The effect of the (interest) scaling param-
eter αi. The maximum of the patience function (1− e−αiiu(g)), which corresponds to
the maximal probability that u will download the content through the cellular link
in one decision, are plotted against the inverse exponential of the aggregated inter-
est (e−iu(g)) with αi = 0.25, 0.5, 1, 2, 4 (greater than 1: blue; less than 1: red; equal
to 1: green) for comparison. (c) The effect of the (centrality) scaling parameter αβ.
For (interest) scaling parameter αi = 1 and aggregated interest iu(g) = 1.39 (corre-
sponding to the maximal cellular downloading probability 1 − e−αiiu(g) = 0.75), the
patience functions pu,g corresponding to the 12 (2 × 2 × 3) combinations βu = 0, 1
(dashed, solid), αβ = 2, 4, 6 (blue, red, green), and g ∈ Iu, g /∈ Iu (increasing, decreas-
ing) are plotted for comparison.

• The shape (i.e., bends upward or downwards, or mathematically, concave or

convex) of the patience function pu,g depends on u’s centrality βu: βu = 1
2
cor-

responds to the diagonal; βu > 1
2
(u is more socially important) corresponds to

a concave (bends upward) curve; βu < 1
2
(u is less socially important) corre-

sponds to a convex (bends downward) curve.

• In all cases, the patience function pu,g is monotonic. The direction of change

(i.e., increasing or decreasing) depends on whether u is interested in g himself,

i.e., g ∈ Iu or g /∈ Iu. If g ∈ Iu, pu,g is monotonically increasing; if g /∈ Iu, pu,g

is monotonically decreasing.
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The effect of the parts on the patience function pu,g is illustrated in Figure 3.2a.

The effects of the scaling parameter αi and αβ are shown in Figures 3.2b and 3.2c,

respectively.

The probabilistic downloading strategy based on the patience function in Equa-

tion (3.5) has a few desirable properties.

Property 4 If u has higher chances of serving users (possibly including himself)

before content expiration, the maximal probability that u will download the content in

one round is higher.

We can validate Property 4 by noticing that the probability 1 − e−αiiu(g) is a

monotonically increasing function depending only on iu(g) (given the system scaling

parameter αi): We will see in Section 3.4.4 that the intuition behind iu(g) is exactly

to reflect the chances of u being able to serve content in time.

Property 5 Other things being equal, more socially important users have higher cel-

lular downloading probability.

Property 5 is evident by comparing each pair of βu = 0 and βu = 1 curves with the

same set of other parameters. Analytically, by Equation (3.5), it is straightforward

to verify that a larger βu leads to a larger pu,g(x) for the same x ∈ [0, 1].

The intuition behind Property 5 is that a more socially important user has better

chances of meeting others, and passing on the downloaded content. Therefore, letting

them download with higher probabilities may help offloading the cellular traffic to

the proximate link.

Property 6 If u is not interested in a tag g, u’s downloading probability will decrease

over time; otherwise, u’s downloading probability will increase over time.

Property 6 is evident by noticing that, in Equation (3.5), pu, is monotonically increas-

ing if g ∈ Iu and monotonically decreasing if g /∈ Iu.
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The intuition behind Property 6 is as follows. If u is not interested in a tag g, u is

being purely altruistic in downloading content with g. u can start downloading with a

high probability in the hope that he can forward the content to others when they meet

later. With the chances of meeting others (and hence forwarding the content to others

through the proximate link) dwindling over time, the value of celluar downloading

decreases. This is reflected by the monotonically decreasing downloading probability

in the second case in Equation (3.5).

Conversely, if u is interested in a tag g, u is helping both himself and others in

downloading content with g. u can afford to start downloading with a low probability

in the hope that he can receive the content from another user who has the content,

and thus, save cellular bandwidth. With the chances of meeting others (and hence

receiving the content from others through the proximate link) dwindling over time,

u becomes increasingly impatient in waiting. This is reflected by the monotonically

increasing downloading probability in the first case in Equation (3.5).

3.4.2 Temporal Tie Strength

The average interval between consecutive encounter ŝu(v) quantifies the frequency

of encounters between u and v (thus, the opportunities to offload the cellular traffic

to the proximate link), based on their past encounters: If they met frequently in

the past, they are more likely to do so in the future. The assumption behind this

is that human social contacts are regular and thus predictable, which is confirmed

by studies on human mobility [91, 182, 172] and is taken by previous social-assisted

routing schemes [107, 124].

ŝu(v) can be computed efficiently by keeping a running sum of past intervals, a

count of encounters, and the timestamp of the last encounter. This is amenable for

implementation in a large network where the nodes, which are resource-constrained,

have to keep track of a large number of neighbors.
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The temporal tie strength su(v) between u and v is a monotonically decreasing

function on ŝu(v) that maps into [0, 1]: The more frequently u and v meet, the stronger

their (social) tie is. The reason for making su(v) a number between 0 and 1 is to avoid

marginalizing u’s own interests in the aggregated interest iu(g) in Equation (3.3),

which will be further discussed later in Section 3.4.4.

3.4.3 Weighted Ego-centric Betweenness Centrality

The weighted ego-centric betweenness centrality βu defined in Equation (3.2) is

inspired and loosely based on the ego-centric betweenness centrality [73]. The dif-

ference between the two are the weights on the edges and that, for a pair of u’s op-

portunistic neighbors v and w, we do not divide [p(v, w)] by the number of shortest

(weighted) paths between them. The reason is that, given the heuristic nature of the

centrality metric, minor relaxation is justified by computation efficiency. The ratio-

nale for considering a weighted graph is that, on an intermittently connected graph

like the proximity-link-based network, the delay (characterized by the weights on the

edges of the graph) matters.

Intuitively, βu is the ratio (thus, βu ∈ [0, 1]) that, among all pairs of u’s oppor-

tunistic neighbors, u can pass on content with the shortest delay (the geodesic, or

the shortest path). The greater βu is, the more topologically important, or socially

important, that u is on the proximity-link-based network.

3.4.4 Interest Aggregation

u’s aggregated interest iu(g) on a tag g (Equation (3.3)) gives an estimation on

the content demand by u and u’s acquaintances.

The rationale for u to weigh an acquaintance v’s interests by their tie su(v) is as

follows. u needs to decide whether downloading a piece of content will help meet

v’s content demand. This is restricted by their chances of meeting each other, as
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characterized by their tie su(v). Even v is interested in a piece of content, if u has

little chance of meeting v, there is little point for u to download the content for v.

Again, the rationale for making the tie su(v) a number between 0 and 1 in Equa-

tion (3.1) is to avoid marginalizing u’s own interests in the aggregated interest iu(g)

in Equation (3.3). Downloading a piece of content that u is interested in, himself,

will immediately satisfy his content demand, while others’ content demand will be

met by u’s celluar downloading only if they meet some time later, before the content

expires. Therefore, in u’s cellular downloading decision, u’s own interests are more

important than others: Making su(v) a number between 0 and 1 does exactly that in

Equation (3.3).

By Equation (3.3), if u is interested in a tag g (g ∈ Iu), iu(g) ≥ 1: The only

possibility that iu(g) < 1 is that g /∈ Iu. The greater iu(g) is, the more likely that

u downloading a piece of content with tag g will help satisfy users’ content demand

through the proximate link.

3.5 Experiment

We compare the performance of the proposed patience-based offloading strategy

with a recent work by Han et al. on cellular offloading, which is based on the target-set

formulation [96]. The comparison is based on simulations driven by two publicly

available contact traces: a real-world collected trace, Haggle INFOCOM 2006 [180],

and a synthesized trace, NUS contact [189].

3.5.1 Methodology

3.5.1.1 Dataset

The Haggle INFOCOM 2006 contact trace (Haggle, henceforth) contained Bluetooth

sightings of 78 attendees and 20 stationary nodes in the conference venue during the
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3 days of the 2006 INFOCOM conference. It is widely cited due to its closed-world

nature: The attendees met each other often in the conference venue, which produced

a trace with repetitive contact patterns in a short time and a confined space. The

time-resolution of this dataset is one second.

The NUS contact trace was synthesized from the class schedules and rosters for the

Spring 2006 semester in National University of Singapore (NUS). Students attending

the same session of a class were considered to have contacts with each other. In our

simulation, we chose a group of 1,000 students who shared a class schedule with at

least one other student in the group. The time-resolution of this dataset is one hour.

3.5.1.2 Procedure

Han et al. [96] proposed a deterministic, centralized, and heuristic algorithm to

choose a set of nodes to serve as the offloading target set, i.e., nodes that download

the content at the beginning and serve as initial seeds for subsequent proximate

propagation). Although the target-set formulation of the cellular offloading prob-

lem is elegant, to select the target set, the algorithm (the emphtarget-set strategy

henceforth) is centralized and requires the SP to collect individual nodes’ contact in-

formation (which intrudes users’ privacy) through either cellular links (which is costly

under the current mobile computing business model) or other non-cellular links (e.g.,

WiFi, which is either inconvenient or untimely). Moreover, it is unclear what is the

best size for the target set. Follow the method used by Han et al. [96], we resolved

this by statistically summarizing the simulation results on multiple target sets with

different sizes. Since Han et al. did not consider users’ interest in their model [96], to

fairly compare their target-set strategy with our patience-based one, we set the upper

limit on the target set’s size to the number of interested users, to eliminate the cases

that (unfairly) favors patience-based strategy due to the absence of a parameter in
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Table 3.1.: Parameters (from Equations (3.5) and (3.2)) for the three instances (eager,
moderate, lazy) of the patience strategy used in the simulation.

eager moderate lazy

Haggle
αi 0.5 0.1 0.05
αβ 2
αs 0.01

NUS
αi 0.05 0.03 0.01
αβ 2
αs 0.01

the target-set model; this allows us to assess the performance of the patience-based

offloading strategy more objectively.

In contrast, the patience-based strategy is localized and adaptive. The parame-

ters in Equation (3.5) can be used to tune the balance between maximizing offloading

efficiency and minimizing content delivery delay in the patience-based strategy. To

study this flexibility, we used three sets of parameters to instantiate the patience-

based strategy. The resulting instances differ in their maximal downloading prob-

ability (1 − exp(−αiiu(g)) in Equation (3.5); explained in Section 3.4.1) or, more

intuitively, the eagerness in downloading the content through the cellular link early.

The three instances are identified as eager, moderate, and lazy and their parameters

(from Equations (3.5) and (3.2)) are shown Table 3.1.

Since the focus of our study was on reducing cellular traffic, we adopted a sim-

ple strategy in the opportunistic forwarding between proximate users: Once a node u

obtained a piece of content (by either downloading through the cellular link or receiv-

ing from other nodes through the proximate link), the content would be forwarded

through the proximate link to all of u’s neighbors when they met u. This is known

in literature as epidemic forwarding or flooding.

We simulated the cellular downloading decision processes under these strategies

with various numbers of interested users. For each given number of interested users,

we generated over 100 interest distributions among the users, and for each interest



www.manaraa.com

49

distribution, the stochastic decision process was repeated 50 times to reduce statistical

bias.

3.5.1.3 Metrics

Performance of the strategies are measured by two metrics, downloading ratio and

content delivery delay.

Download ratio. An offloading strategy’s efficiency can be measured the number

of cellular downloads by the end of the decision process (which is determined by the

content’s freshness). Quantitatively, if there are ni users who are interested in the

content and, by the end of the offloading process, the content is downloaded through

the cellular link d times, the downloading ratio of the offloading strategy is d
ni
×100%.

An offloading strategy that can satisfy users’ content demand with fewer cellular

downloads is more efficient.

Content delivery delay. While delay is inevitable for an offloading strategy that

does not have every interested user download a piece of content as soon as it be-

comes available, it is desirable that the delay is minimized. Thus, another aspect

of an offloading strategy’s efficiency is the content delivery delay that it introduces.

Quantitatively, for a piece of content u that is released at the moment 0 and must be

delivered by the moment 12, let the time of delivery to an interested user i ∈ Iu be

td(i), the (average) content delivery delay is
∑

i∈Iu td(i)/|Iu|, which is a value between

0 and 1.

While it would be nice to have an offloading strategy that has low downloading

ratio and content delivery delay, these objectives are not always compatible with

each other: A trade-off between cellular bandwidth usage and content delivery delay

often needs to be made. This is discussed in more detail, in the context of simulation

results, in Section 3.5.2.

2We can normalize the delay by content’s delivery deadline to make the delivery delay to 1. Since
all interested users who have not received the content by the delivery deadline download the content
directly through cellular link, normalized content delivery delay is never greater than 1.
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Figure 3.3.: Download ratio and (normalized) delivery delay of the Haggle dataset.
Results with different numbers of interested users (10, 20, and 30 interested users
out of the 98 nodes) and content delivery deadline (200, 350, and 500 seconds) are
compared. For the patience strategies, a downloading decision is made every 50
seconds.

3.5.2 Results

The simulation results of the Haggle dataset are shown in the form of box-

plots3 [138] in Figures 3.3a and 3.3b, respectively. Results with different numbers

of interested users (10, 20, and 30 interested users out of the 98 nodes) and con-

tent delivery deadline (200, 350, and 500 seconds) are compared. As noted in Sec-

tion 3.5.1.2, the target-set strategy was enhanced to eliminate the cases in which the

size of the target set is greater than the number of interested users; this allows us to

access the performance of the strategies more objectively.

3Boxplots show the second quartile (i.e., the median) along with the first and third quartiles (i.e.,
25% and 75%) in the middle box. The whiskers extend to the extrema within 1.5 times of the
inter-quartile range (i.e., the distance between the first and third quartiles). Data beyond the end
of the whiskers are outliers and plotted as points [138].
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Figure 3.4.: Download ratio and (normalized) delivery delay of the NUS dataset. Re-
sults with different numbers of interested users (100, 200, and 300 interested users
out of the 1,000 nodes) and content delivery deadline (4, 7, and 10 hours) are com-
pared. For the patience strategies, a downloading decision is made every 1 hour.

An ideal offloading strategy has a small download ratio and short delivery delay

(Section 3.5.1.3). In reality, these two goals are usually not compatible. This is ev-

ident in the three variants of the patience-based strategy: While the eager variant

has the shortest delivery delay (Figure 3.3b at the expense of largest download ratio

(Figure 3.3a), the lazy variant has the opposite performance trade-off and the moder-

ate variant comes in between. Patience-based strategy, through its parameters (e.g.,

Table 3.1), provides a control over the trade-off between a small download ratio and

short delivery delay.

One type of content that benefits the most from the situation awareness in our

patience-based offloading strategy is the content that needs to be delivered quickly.

One example is the content that expires after 200 seconds in Figures 3.3a and 3.3b:

All variants of the patience-based strategy deliver the content with a significantly
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lower celluar download ratio and delivery delay than that of the target-set strategy.

In this case, an interested user who chooses to wait for content is very likely to

either 1) receive the content quickly from other users through the proximate channel

or 2) do not receive the content till the content delivery deadline. For the latter

case, the patience-based offloading strategy allow those users to realize that they

are unlikely to receive the content from others (i.e., become impatient) and, hence,

download the content directly. In contrast, the same group of users will wait the end of

content delivery deadline to download the content under the target-set strategy. This

corresponds to the shorter delivery delay of the patience-based strategy in Figure 3.3b.

For a similar reason, the benefit of situation awareness, which is the essence of the

patience function (Equation (3.5)), is more pronounced for the type of content with

fewer interested users: The sparsity of the interested users will make those interested

users to have a higher probability than their (probably uninterested) neighbors to

download the content (through the interest aggregation in Equation (3.3)); the inter-

ested users who have not received the content will become impatient in waiting and

hence download the content sooner than they otherwise would under the target-set

strategy.

For the popular content that stays fresh longer, such as the one that is interested

by 30 users and has content freshness of 500 seconds, the target-set strategy may

have a smaller (i.e., better) download ratio than some variants of the patience-based

strategy, as shown for the case of eager variant with 30 interested users in Figure 3.3a.

An examination of corresponding cases in Figure 3.3b suggests that this advantage of

the target-set strategy is attained at the expense of a significantly longer delivery delay

(3 times as long as that of the patience-based strategy). It also suggests that, in these

situations (i.e., many interested users and long content freshness), having only a few

users to download the content initially and allow the content to propagate through the

proximate channel could greatly reduce cellular downloading cost. The patience-based

strategy could be optimized for these situations by tuning the parameters to have
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a small maximal downloading probability (Equation (3.5)), as demonstrated by the

lazy variant of patience-based strategy in Figure 3.3a.

Although it is not evident from Figures 3.3a and 3.3b, we note that, unlike the

target-set strategy that requires collection of users’ contact traces for offline training

(to find the target set), the patience-based strategy only requires exchange of infor-

mation between opportunistically encountered users while achieving comparable, or

even better, performance: The patience-based strategy is localized and online. The

benefit of the patience-based offloading is that it is more less intrusive to users, has

lower maintenance overhead for the service provider, is more scalable, and adapts

easily to the preference and connection changes among the users.

Comparable results on the NUS dataset are shown in Figures 3.4a and 3.4b.

Despite the increase of scale (from around 100 nodes in Haggle to 1, 000 nodes in

NUS) and trace regularity (NUS is synthesized from class schedules and roasters, as

described in Section 3.5.1.2), the observation and discussion on performance trade-

off and the benefits and limitation of the patience-based strategy drawn from Haggle

still hold for NUS.

3.6 Related Work

Mobile data offloading, or mobile cellular traffic loading, is about the trade-off be-

tween the persistent but expensive cellular links and the intermittent but cheap (often

free) local links. Balasubramanian et al. [21] and Lee et al. [123] conducted empirical

studies, and confirmed the feasibility of offloading cellular traffic through intermittent

Wi-Fi links in urban vehicular and pedestrian settings, respectively. Han et al. [95]

proposed using Bluetooth to offload cellular traffic. The follow-ups [94, 96] formulated

mobile data offloading as a target-set selection problem [173], and proved the approxi-

mation bound of a greedy approximation algorithm [117]. Ioannidis et al. [108] proved

the convexity of the “timely content distribution over mobile social network” prob-

lem and studied how the average age of content changes when the number of users
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increases. Our work complements their contributions by studying the distribution of

topical content and modeling users’ content preference and time-varying patience for

content.

The concept of centrality, which originated in sociology to measure relative impor-

tance of social actors, has been applied in studying computer networks. Borgatti [28]

surveyed common definitions of the centrality concept (degree, closeness, between-

ness, and eigenvector [26]). Hui et al. [107], among others, used centrality as a hint

for routing in delay-tolerant networks. Kim and Anderson [118] adapted centralities

to temporal-evolving graphs. The significant overhead of gathering information to

compute traditional socio-centric centralities prompts researchers to investigate al-

ternative ego-centric centralities, especially ego-centric betweenness centrality [73].

A finding from these investigations is that although the socio-centric and ego-centric

versions of the betweenness centrality do not usually match in raw values, they of-

ten agree in relative ranking [143]. Brandes, in seeking a faster algorithm to compute

the (socio-centric) betweenness centrality, implicitly extends betweenness centrality to

weighted graph [30]. Based on the regularity of human mobility pattern [91, 182, 172],

we, adapting the ideas of Nanda and Kotz [143] and Brandes [30], define a weighted

ego-centric betweenness centrality to help users locally decide their relative temporal

topological importance.

Users’ content preference was previously considered in the context of content-

centric routing [39] and publisher/subscriber architecture [124]. Given the preference

variance for the large number of cellular subscribers, it is also relevant for mobile data

offloading. Routing through proximity links is not a focus of this work, and we as-

sume flooding. We include content preference in our model, discuss its interplay with

social importance and bounded delay tolerance, and provide a method to consolidate

them in an adaptive probabilistic cellular offloading strategy.
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3.7 Summary and Future Work

In offloading topical cellular content, the virtue of patience is to allow the more

capable to have better chances of serving the common good. The patience function

(Equation (3.5)) shows one approach to locally synthesizing topological importance

and content demand for better offloading efficiency. The simulation results suggest

that properly involving topologically important, but disinterested, users in download-

ing and forwarding content helps in reducing cellular traffic.

These are just the beginnings; plenty of work is left to be done. Enforcement and

incentive are two important issues to be further studied once the offloading framework

is established. Other practical issues, like packetization, buffer management, and

node churning, are omitted in the current work for simplicity, but are unavoidable in

real-world implementations.
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4 TEMPORAL COVERAGE BASED CONTENT DISTRIBUTION IN

HETEROGENEOUS SMART DEVICE NETWORKS

This chapter abstracts prioritized defense deployment (Chapter 2) and mobile cellular

offloading (Chapter 3) into a “content distribution problem using opportunistic links”

problem, and extends the consideration to a scenario in which not all devices have

cellular data channel available due to device limitation or cost concerns, but proxi-

mate channel can be established between any pair of devices that are close to each

other. A piece of content is injected into the network through those devices with cel-

lular channel (the “seeds”), and the objective is to deliver the content to all devices

(i.e., full coverage) over opportunistic proximate links with few duplication (i.e., low

propagation cost). The essence of this chapter, in light of the other chapters, is to

propose 1. a proximate channel opportunistic connectivity quality metric, temporal

coverage quality, using kernel-density estimation (KDE), 2. and a distributed algo-

rithm that elects a temporal covering set (similar to T -dominating set in Chapter 2)

using temporal coverage quality that, intuitively, “grows from the seeds.” The result-

ing propagation rule is to restrict forwarding within the (smaller) temporal covering

set, instead of the whole network.

This chapter is previously published as a conference paper [155] in IEEE Interna-

tional Conference on Communications (ICC), 2015.

4.1 Introduction

In this chapter, we consider content distribution in heterogeneous smart device

networks. By “heterogeneous smart device network,” we mean a collection of smart-

phones/tablets in which the cellular data channel is available on only some de-

vices, but all devices can transfer data through the proximate channel such as Blue-
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tooth/NFC/Wi-Fi Direct. In other words, such networks consist of a few constantly

available links to a set of nodes (backed by the cellular channel) and many intermit-

tently available links between (potentially) all the nodes in the network (backed by

the proximate channel and defined by the mobility of the nodes). The heterogeneity

models the common scenario that the cellular data channel is not available on many

tablets (due to the lack of 3G/4G cellular transceivers) or some smartphones (explic-

itly disabled by their users due to cost or security concerns). On these devices, when

the (infrastructural) Wi-Fi channel is not available, the proximate channel is the only

means of data communication.

We consider the common scenario in which the mobility of the network nodes, al-

though cannot be predicted precisely, nevertheless have regularity [111, 186, 187].

Examples of such networks are all the smart devices of regular students and fac-

ulty/staff members on a university campus or of employees on an enterprise site. In

fact, given a densely populated and frequently visited area, the set of smart devices

owned by frequent visitors often exhibit such encounter regularity.

Content distribution in smart device networks have multiple applications, two of

which are mobile cellular data offloading [95, 96, 154] and prioritized defense de-

ployment in enterprise networks [153]. In these applications, a piece of data (e.g.,

user-subscribed content in mobile cellular data offloading or vulnerability patches in

prioritized defense deployment) is injected into or collected from the network through

the cellular channel and is propagated among the nodes in the network through the

proximate channel. A common objective is to minimize monetary or energy costs by

reducing the number of times the content is downloaded through the cellular chan-

nel or duplicated through the proximate channel. Moreover, due to objective (e.g.,

the high costs or absence of a central coordination mechanism [154]) and subjective

(e.g., privacy concerns [153]) constraints, it is desirable that the content distribution

process emerges from the collective effect of localized forwarding decision made by

intermediate nodes without central coordination. These settings are formulated in

Section 4.2.1.
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The key problem addressed in this work is how to exploit content’s delay toler-

ance for more cost-effective content distribution (i.e., fewer copies over the proximate

channel are considered to be more cost-effective) in a heterogenenous smart device

network. The key ideas of this work towards addressing this problem are proposing:

• a temporal-spatial structural property (temporal coverage) of heterogeneous

smart device networks that exploits the temporal regularity of proximate en-

counters in such networks for effective content distribution.

• algorithms that distributedly (i.e., each device runs the algorithm without cen-

tral coordination) elect a temporal covering “backbone” from such networks,

based on devices’ local proximate encounter records.

To the best of our knowledge, novelties and contributions of our work include:

• Unlike existing applications of content distribution in smartphone network [94,

95, 96, 154, 153], in which the network nodes are homogeneous with regard to

cellular data communication capability (i.e., all nodes can push/pull data from

cellular links at will), we consider the more challenging heterogeneous setting, in

which nodes without cellular links can only receive/send data through proximate

channels such as Bluetooth/NFC/Wi-Fi Direct.

• We define the concept of temporal coverage based on quantitative metrics of

proximate channel’s temporal quality using kernel-density estimation (KDE),

which preserves certainty about such estimation that is otherwise lost in simpler

statistical metrics such as average or expected [153] inter-encounter interval.

• We propose localized algorithms (Section 4.2.3) that distributedly elect tempo-

rally covering nodes without central coordination.

• We verify the proposed algorithm’s effectiveness for content distribution in het-

erogeneous smart device networks with simulations using real public Bluetooth

encounter traces.
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4.2 Design

4.2.1 Problem Formulation

The problem discussed in Section 4.1 can be formulated as follows. Let U be a

set of nodes in a heterogeneous smart device network, Uc and Uc̄ be the sets of nodes

with and without cellular data channel, respectively: Uc ∪ Uc̄ = U and Uc ∩ Uc̄ = ∅.

In this network:

• Content are generated outside the network and injected into the network through

the cellular channel, i.e., the nodes with cellular data links Uc (i.e., the “seeds”

hereafter) are the interface between network and the outside Internet.

• Content can be forwarded between two devices when they move close enough to

establish a proximate channel, in which case we say they encounter with each

other.

• Every u ∈ U records its past encounters with other nodes, say, with v ∈ U :

[su,v1 , eu,v1 ], . . . , [su,vku,v
, eu,vku,v

] (su,v1 < eu,v1 < . . . < su,vku,v
< eu,vku,v

), in which u encoun-

ters v (and hence u can send data to v through the proximate channel) during

the time windows [su,vi , eu,vi ] (for i ∈ {1, . . . , ku,v}); conversely, no content can

be forwarded between u and v during (eu,vi , su,vi+1) (for i ∈ {1, . . . , ku,v − 1}) due

to the lack of communication channel.

The objective is to minimize the content distribution cost, defined as the number of

times the content is forwarded from one device to another through the proximate

channel, without central coordination.

The challenge of achieving cost-effective content distribution in heterogeneous

smart device networks can be better understood by considering the following schemes.

In each case, node u has obtained the content and is deciding whether to forward the

content to the nodes it encounters in the future.

Eager multiple forwarding. u forwards the content once to every node it encoun-

ters. This is known as flooding or epidemic routing in literature [226]. The overall



www.manaraa.com

60

delivery delay is minimized. However, the delivery cost can be higher than necessary.

Nevertheless, it envelops the proximate-channel-based data propagation process from

the outside—no data propagation through the proximate channel can deliver the

content faster than the eager multiple forwarding.

Eager k forwarding. u forwards the content once to the first k nodes it encoun-

ters [186]. The delivery cost is bounded from above by k|U |: Each node forwards

the content at most k time. Delay at each intermediate nodes is also minimized.

Depending on proximate encounter opportunities and the choice of k, eager k for-

warding’s performance ranges from eager single forwarding [187] to eager multiple

forwarding [187]. However, since proximate encounter opportunities are often not

uniform among nodes, it is difficult, if not impossible, to find a (global) k that per-

forms optimally.

Random forwarding. Upon encountering another node v, u makes a random de-

cision of whether to forward the content to v. u will forward the data to v at most

once to avoid duplication. If the random decision is unbiased (i.e., equal chance of

forwarding/not forwarding), the delivery cost is halved comparing with eager mul-

tiple forwarding, while random forwarding does not suffer from the delivery failure

as in eager single forwarding. The relative delivery cost to eager multiple forward-

ing can be tuned by adjusting the forwarding decision’s odds: Lower forwarding odds

correspond to lower delivery costs. However, it is not clear how to optimally tune the

forwarding odds without global coordination or the ability to detecting in-network

content saturation as required by more sophisticated adaptive random forwarding

schemes (e.g., the work by Liu and Wu [129]), which are not generally available.

4.2.2 Temporal Quality Metrics

In light of the schemes discussed at the end of Section 4.2.1, our key idea of

improvement towards cost-effective content distribution (Section 4.2.2.3) is to apply

these forwarding rules to, instead of the full network, a restricted set of nodes that we
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call a temporal covering set (Section 4.2.2.2). Intuitively, a temporal covering set is

a proximate-channel content distribution backbone with strong internal connectivity

and full external coverage of the whole network. Both the internal connectivity and

external coverage are defined on quantitative temporal quality metrics of proximate

channels based on the readily available encounter records.

4.2.2.1 Temporal Quality of Proximate Channels

Based on its past encounters [su,v1 , eu,v1 ], . . . , [su,vku,v
, eu,vku,v

] with v, u can estimate the

temporal quality of its proximate channel with v, in terms of the proximate channel’s

potential of forwarding the content timely.

A straightforward idea is to use average inter-encounter interval, defined as

1

ku,v − 1

ku,v−1∑
i=1

(
su,vi+1 − eu,vi

)
.

A smaller average inter-encounter interval between two regularly encountered nodes

indicates that content are more likely can be forwarded from one node to the other

timely, and hence their (opportunistic) proximate channel is of a better temporal

quality.

However, as will be discussed shortly, average inter-encounter interval fails to cap-

ture the certainty about proximate channel quality and can lead to counter-intuitive

results. Therefore, we propose the following temporal quality metric of proximate

channels based on kernel density estimation (KDE).
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A KDE1 f̂(x) of u’s inter-encounter intervals to v, with the Epanechnikov kernel

K(x) = 3
4
(1− x2)1|x|≤1 [71], is:

f̂u,v(x) =
1

ku,v − 1

ku,v−1∑
i=1

K(x− (su,vi+1 − eu,vi )), (4.1)

in which 1|x|≤1(x) is the indicator function on the set {x| − 1 ≤ x ≤ 1} that equals to

1 when |x| ≤ 1 and equals to 0 otherwise. Then, the T -coverage (temporal) quality

dTu (v) of u’s proximate channel to v is defined as:

dTu (v) =

∫ T

−∞
f̂u,v(x)dx. (4.2)

As a special case, if u has never encountered v, or no inter-encounter interval is less

than the parameter T , dTu (v) is defined to be 0. By Equation (4.2), 0 ≤ dTu (v) ≤ 1

and dTu (v) = dTv (u). Note that dTu (v) can be computed locally by u from information

readily available to u, i.e., its encounter records with v.

T in Equation (4.2) is a time-domain quality threshold parameter that is used to

filter out sporadic or long-delay opportunistic links between nodes. Without T as

the integral upper bound, the integration (Equation (4.2)) of the kernel f̂u,v (Equa-

tion (4.1)) from −∞ to ∞ would always be 1 by the definition of smoothing kernels,

and thus cannot be used to compare temporal quality of their proximate channel. In

contrast, integration from −∞ up to T in Equation (4.2) endows the temporal quality

metric dTu (v) the semantics of an estimation of the probability that u will encounter v

at least once within a time window of T . Greater dTu (v) translates to a better chance

that u can deliver content to v timely through their opportunistic proximate channel.

Comparing with average inter-encounter interval, KDE-based proximate channel

quality estimation (Equations (4.2)) is more nuanced. To see this, consider an ex-

ample with time unit of seconds, T = 110, and 10 groups of inter-encounter interval

1We deliberately omit the “smoothing bandwidth” parameter, often denoted by the symbol h, to
simplify the (already complex) notation; it is understood that a default smoothing bandwidth (e.g.,
the R implementation of KDE specifies the algorithm of computing the smoothing bandwidth from
inputs) is used here.
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Table 4.1.: KDE-based T -coverage temporal quality (with T = 110) dTu (v) (Equa-
tion (4.2)) of u’s proximate channel to v can capture the quality differences of the
different groups shown in Figure 4.1.

i in 2i dTu (v) i in 2i dTu (v)
1 0.293 6 0.346
2 0.303 7 0.360
3 0.312 8 0.375
4 0.323 9 0.391
5 0.334 10 0.410

records: Group i (i ∈ {1, 2, . . . , 10}) consists of 2i pairs of interleaved 100 and 200,

i.e., u encounters v with periodic intervals of 100, 200, 100, 200, etc.. The average

inter-encounter interval for all 10 groups has the same value of 150, which is greater

than the proximate channel quality threshold T = 110. This suggests that the qual-

ity of these proximate channels does not meet expectation. However, the fact that

“u periodically encounters with v in 100 seconds” suggests otherwise.

In contrast, Figure 4.1 and Table 4.1 show that KDE-based proximate channel

quality dTu (v) preserves more temporal quality information about the opportunistic

proximate channel between u and v (i.e., producing a continuous, rather than binary,

degree of satisfying quality expectation with regards to T ) and captures the differences

in temporal quality of the proximate channel between these groups in a single num-

ber : Proximate channel temporal quality derived from a group with 2 × 210 = 2048

data points (0.410 from Table 4.1) is intuitively better (i.e., more robust) than the

estimation that is derived from a group with only 2× 21 = 4 data points (0.293 from

Table 4.1).

4.2.2.2 Temporally Covering Set

For a pair of nodes u, v ∈ U , if the T -coverage quality dTu (v) > 0, we define a

directed edge from u to v with a weight of dTu (v)—in this case, we say that u T -covers
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Figure 4.1.: The kernel density estimation (KDE; Equation (4.1)) for 10 groups of
inter-encounter interval records with 2i pairs of interleaved 100 and 200 in group i.
The emerging dual peaks with increasing i correspond to increasing certainty about
the density distribution of the nodes’ inter-encounter intervals. KDE preserves u’s
certainty about the temporal quality estimation of its proximate channel with v that
is otherwise lost in average inter-encounter interval.

v or, equivalently, v is T -covered by u. These edges on U define a directed weighted

graph, which we also denote as U when there is no ambiguity in the context. A set of

nodes DT ⊂ U is a temporally covering set with temporal threshold of T (“T -covering

set” for brevity) if:

• (Coverage) For each node u ∈ U , either u ∈ DT or there is a node v ∈ DT such

that u is T -covered by v.

• (Connectivity) For each node u ∈ DT , either u is a seed (i.e., u ∈ Uc), or there

is a seed v ∈ Uc (i.e., v is equipped with cellular data channel) such that there

is a path (i.e., a chain of consecutively T -covered nodes) from v to u.

The nodes DT are the T -dominators (or simply “dominators”), and the nodes that

are T -covered by other nodes the T -dominatees (or simply “dominatees”), i.e., “dom-
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inators T -cover dominatees.” By Connectivity, non-seed dominators are also domi-

natees.

4.2.2.3 Temporal Coverage Based Content Distribution

Coverage and Connectivity, coupled with the interpretation of T -coverage tempo-

ral quality as the probability of timely encounters, essentially make a T -covering set

a virtual backbone for content distribution in a heterogeneous smart device network.

More concretely, if we restrict the “eager multiple forwarding” rule (Section 4.2.1) to

the T -covering set (i.e., only T -dominators will forward data):

• Connectivity dictates that each dominator can receive the content through a

chain of dominators from the seeds (where the content is injected or collected).

• Coverage dictates that each non-dominator shall be directly reachable from a

dominator timely.

Therefore, this temporal coverage based content distribution scheme (i.e., eager mul-

tiple forwarding restricted to a T -covering set) allows content to be delivered from

seeds to any node with only timely encountered nodes serving as intermediaries. In-

tuitively, this allows more cost-effective content delivery (since the T -covering set is a

subset of the whole network) than eager multiple forwarding, without incurring delay

penalty (for delaying content delivery to destinations too much).

In this scheme, delivery cost is positively associated with the size of the T -covering

set (number of dominators and the edge density of the covering set). Therefore,

the localized dominator election algorithms presented next make efforts to reduce the

number of elected dominators.

4.2.3 Algorithm

The core of our solution to cost-effective content distribution in heterogeneous

smart device networks is the following localized dominator election algorithm, in
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Algorithm 1 u’s local decision process on whether to change its dominator status
when u encounters v after they have exchanged information.
1: I only consider quality opportunistic links
2: if dTu (v) > 0 then
3: Iu updates L↑(u) and L↓(u)
4: if v is a dominator then
5: if v ∈ Uc or u is a non-dominator then
6: L↑(u)← L↑(u) ∪ {v}
7: L↓(u)← L↓(u) \ {v}
8: end if
9: for w ∈ L↓(u) do

10: if dTv (w) > dTu (w) then I if w is better T -dominated by v than by u
11: L↓(u)← L↓(u) \ {w}
12: end if
13: end for
14: else if v is a non-dominator then
15: L↑(u)← L↑(u) \ {v}
16: x←True Ix =True if u is v’s best T -dominator
17: for w ∈ L↑(u) do

18: if dTv (w) > dTu (v) then I if v is better T -dominated by w than by u
19: x←False
20: go to 23
21: end if
22: end for
23: if x =True then Iu is v’s best dominator
24: L↓(u)← L↓(u) ∪ {v}
25: end if
26: end if
27: Iu sets its dominator status based on whether L↓(u) and L↑(u) are empty
28: if u /∈ Uc then I only non-seeds change dominator status
29: if L↓(u) = ∅ then
30: u turns a non-dominator
31: else if L↑(u) 6= ∅ and L↓(u) 6= ∅ then
32: u turns a dominator
33: end if
34: end if
35: end if

which the nodes, instead of being coordinated centrally, turn themselve into dom-

inators/non-dominators based on the information they gather from their encounters

with other devices. In the algorithm, each node u locally maintains two lists about

other nodes: the upstream list L↑(u) and downstream list L↓(u).

Initially: all the seeds Uc (i.e., nodes that are equipped with cellular channel)

turn dominators and will remain so throughout the election process; all the non-seeds

Uc̄ (temporally) turn non-dominators and may turn dominiators by localized election

later. Both L↑(u) and L↓(u) are both initially empty (i.e., L↑(u) = L↓(u) = ∅) for

every node u in the network.
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When u encounters v, u first updates its T -coverage quality dTu (v) (which, as

discussed after Equation (4.2), equals to dTv (u)), and then carries out the following

information exchange procedure:

• u sends its seed/dominator status to v.

• u sends L↑(u) and L↓(u) to v.

• u receives {dTv (w)|w ∈ L↓(u)} and {dTv (w)|w ∈ L↑(u)} from v.

v follows the same procedure by swapping the symbols u and v. The amount of

exchanged information is linear to the number of nodes that they have encountered

in the past (rather than the size of the network unless the network is dense) and can

be, for example, piggy-backed to periodic beacons2.

After the information exchange, u has all the information needed to independently

carry out Algorithm 1, in which u will turn a dominator if its updated upstream/down-

stream lists are both non-empty, and will turn a non-dominator if its downstream list

is empty. v follows the same procedure by, again, swapping the symbols u and v in

Algorithm 1.

The essence of Algorithm 1 is that:

• u will include a dominator v as (one of) its upstream L↑(u) (line 6) if u thinks

(based its local information after the exchange) that v connects u to one of the

seeds, i.e., for Connectivity. If so, u will in turn consider delegate its downstream

w ∈ L↓(u) to v (lines 9–13) if v is a strictly better dominator (defined by the

relation dTv (w) > dTu (w) on line 10).

• u will include a non-dominator v as (one of) its downstream L↓(u) (line 24)

if u thinks (again, based on its local information) that none of u’s upstream

dominates L↑(u) strictly better than u does (the logic on lines 16–25).

• The “strictly better” comparison (lines 10 and 18) prevents two nodes from

mutually delegating the dominator responsibility for a third node w to each

other and thus leaves w (wrongfully) uncovered.

2See, for example, Wu’s discussion [214] on the implementation of this information exchange through
periodic beacons.
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Figure 4.2.: Smoothed density distribution of intervals between consecutive encoun-
ters in the sigcomm2009 dataset.

Thus, Connectivity (i.e., content coverage) is maintained and the number of domina-

tors (i.e., delivery cost) is also reduced.

4.3 Experiment

4.3.1 Datasets and Setup

We use the publicly available Bluetooth encounter dataset sigcomm2009 [158,

157], downloaded from the CRAWDAD wireless dataset archive3. The raw trace

(the “proximity.csv” trace in the dataset) consists of timestamped periodic Bluetooth

proximity device discovery records of 76 users during the SIGCOMM 2009 conference.

Based on the meta-data, we filter out sporadic devices (those with ID over 100 in

the dataset), and transform the periodic scanning records into encounter events (“ses-

sions”). Specifically, since the devices make a scanning every 120+/-10.24 seconds

3http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009/

http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009/
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(randomized) for 10.24 seconds, we combine consecutive scanning records between a

pair of devices within that time window into the same session. Moreover, only 48 out

of the 76 nodes regularly meet each other up to the trace timestamp of about 12, 500

(out of timestamp of up to about 35, 000, after which the recorded encounter are spo-

radic and the performance curves shown below go flat). Therefore, we zoom in to

that segment of trace to show the details of the results below.

Figure 4.2 shows the (smoothed) density distribution of inter-encounter intervals

(delay between two consecutive sessions for a pair of nodes) of the devices. Note that

the x axis is in logarithmic scale. In the results shown below, we set the temporal

quality threshold T to 1, 000 (corresponding to the x axis value of 3.0 in Figure 4.2)

to include enough temporal-spatial links without obliterating the quality value: As

briefly discussed in Section 4.2.2.1, choosing a too small or too small threshold T would

lead to the quality metric dTu (v) to be all 0 (for too small T ) or 1 (for too large T )

and hence cannot capture the temporal quality of different proximate channels. The

results below show that our choice of 1, 000 does a fair job in capturing such quality

differences. A general heuristics is left for future work.

We simulate the content distribution processes with the data forwarding rules

discussed in Section 4.1: eager multiple forwarding (emulti), eager single forwarding

(esingle), and random forwarding with a 50% forwarding chance at each encounter

(random 50). As for the proposed algorithm, we consider the T -coverage-based for-

warding (Section 4.2.2.3; tdom) and a variant of T -coverage-based forwarding with

the dominator has a 50% chance of forwarding at each encounter (tdom50) to be

comparable with random50.

4.3.2 Simulations and Results

Figures 4.3 and 4.4 show the average coverage (the number of nodes that receive

the content) and delivery cost (the number of times the content get sent from one node

to another) normalized with emulti (i.e., by arithmetic division of the raw numbers)
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Figure 4.3.: Average content distribution coverage normalized by the eager multiple
forwarding scheme with different numbers of seeds over 100 random runs. The row
headings show the number of seeds and the column heading shows the temporal qual-
ity threshold T for the temporal coverage based schemes. Scheme notation: esingle
(eager single forwarding), random50 (50% random forwarding), tdom50 (50% random
T -coverage-based forwarding), tdom (T -coverage-based forwarding).

Table 4.2.: Average content delivery delay comparing to the eager multiple forwarding
scheme with the same settings and notation as in Figure 4.3.

esingle random50 tdom50 tdom
2 5577 271 397 81
4 5530 199 306 29
8 4725 173 241 25
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Figure 4.4.: Average content delivery cost normalized by the eager multiple forward-
ing scheme with the same settings and notation as in Figure 4.3.

throughout the content distribution processes for different numbers of seeds over 100

random runs; Table 4.2 shows the average content delivery delay comparing to emulti

with the same settings. In computing the delays, nodes that have not received the

content by the end of the content distribution process (there are many such instances

for esingle) are considered to receive the content at the last timestamp; otherwise,

the indefinite delay could not be used for computing the average delay.

Since emulti envelops the proximate-channel-based content distribution process

from the outside (as discussed in Section 4.2.1), normalizing the results with emulti

in Figures 4.3 and 4.4 and in Table 4.2 clearly show how each scheme exploits con-

tent’s delay tolerance to improve content delivery costs. The results indicate that,
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by restricting the eager multi forwarding rule to the locally elected temporal covering

set, tdom reduces content delivery cost by 25% (Figure 4.4) with minimum delays

(Table 4.2) and little sacrifice in coverage (Figure 4.3) comparing with alternatives

such as random50 and esingle. Moreover, if modest delays and coverage loss are al-

lowed, tdom50 can be applied to reduce the delivery cost of random50 by another

25%. In summary, these results show that the temporal covering set is a cost-effective

(virtual) content distribution backbone for heterogeneous smart device networks.

4.4 Related Work

The work is motivated by extending applications of content distribution in ho-

mogeneous smart device networks (in which all nodes have cellular data capability

that can be activated on demand) such as mobile cellular [95, 96, 154] and enterprise

network defense prioritization [153] to heterogenenous networks (in which only some

nodes have cellular data capability). One challenge of the heterogeneous setting is

the requirement of Connectivity to seeds. In particular, the concept of temporal cov-

erage is inspired by the work on enterprise network defense prioritization [154], which

extends previous works [213, 220, 177] on (spatially) connected dominating set (CDS)

based routing in ad hoc network (MANET) to the temporal dimension, by exploiting

the regularity [111, 186, 187] exhibited by many proximity-channel-based smartphone

networks, as a prominent application of delay-tolerant networks (DTNs) [75, 107] that

have received significant research in the past decade.

4.5 Summary and Future Work

We propose temporal coverage based content distribution to effectively exploits

content’s delay tolerance for reducing content distribution costs in heterogeneous

smart device networks. KDE is used to process readily available encounter records to

capture the temporal quality of the proximate channel that eludes simpler measure-

ments such as the average inter-encounter interval. Using real Bluetooth encounter
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traces, we demonstrate that temporal coverage based content distribution signifi-

cantly cuts content delivery cost with minimal delay and no sacrifice in coverage.

Future work includes implementing the proposed methodology and deploying it in

real heterogeneous smart device network for further insights.
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5 BEHAVIORAL MALWARE DETECTION IN DELAY TOLERANT

NETWORKS

Taking an angle different from Chapters 2, 3, and 4, which focus on facilitating distri-

bution of useful content (e.g., vulnerability patches in Chapter 2 and user-subscribed

content in Chapter 3), this chapter considers the opposite problem of preventing the

distribution of unwanted content over opportunistic proximate links. Using a prob-

abilistic behavioral model for proximity malware (malware that propagates through

proximate links), this chapter addresses several challenges of sequential evidence col-

lection that are unique to the decentralized and opportunistic nature of the proxi-

mate channel, such as balancing between infection risk and service loss, and handling

potentially false indirect evidence in evidence sharing.

This chapter is previously published as a journal article [156] in the January

2014 issue of IEEE Transactions on Parallel and Distributed Systems (TPDS), as

an extension to the conference paper, “Behavioral Detection and Containment of

Proximity Malware in Delay Tolerant Networks” [151], that is published in IEEE

International Conference on Mobile Ad-hoc and Sensor Systems (MASS), 2011.

5.1 Introduction

The popularity of mobile consumer electronics, like laptop computers, PDAs,

and more recently and prominently, smartphones, revives the delay-tolerant-network

(DTN) model as an alternative to the traditional infrastructure model. The widespread

adoption of these devices, coupled with strong economic incentives, induces a class

of malware that specifically targets DTNs. We call this class of malware proximity

malware.
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An early example of proximity malware is the Symbian-based Cabir worm, which

propagated as a Symbian Software Installation Script (.sis) package through the Blue-

tooth link between two spatially proximate devices [196]. A later example is the

iOS-based Ikee worm, which exploited the default SSH password on jailbroken [80]

iPhones to propagate through IP-based Wi-Fi connections [197]. Previous research [6]

quantify the threat of proximity malware attack and demonstrate the possibility of

launching such an attack, which is confirmed by recent reports on hijacking hotel Wi-

Fi hotspots for drive-by malware attacks [122]. With the adoption of new short-range

communication technologies such as NFC [146] and Wi-Fi Direct [210] that facili-

tate spontaneous bulk data transfer between spatially proximate mobile devices, the

threat of proximity malware is becoming more realistic and relevant than ever.

Proximity malware based on the DTN model brings unique security challenges

that are not present in the infrastructure model. In the infrastructure model, the

cellular carrier centrally monitors networks for abnormalities; moreover, the resource

scarcity of individual nodes limits the rate of malware propagation. For example, the

installation package in Cabir and the SSH session in Ikee, which were used for mal-

ware propagation, cannot be detected by the cellular carrier. However, such central

monitoring and resource limits are absent in the DTN model. Proximity malware ex-

ploits the opportunistic contacts and distributed nature of DTNs for propagation.

A prerequisite to defending against proximity malware is to detect it. In this

chpater, we consider a general behavioral characterization of proximity malware. Be-

havioral characterization, in terms of system call and program flow, has been pre-

viously proposed as an effective alternative to pattern matching for malware detec-

tion [119, 23]. In our model, malware-infected nodes’ behaviors are observed by others

during their multiple opportunistic encounters: Individual observations may be im-

perfect, but abnormal behaviors of infected nodes are identifiable in the long-run. For

example, a single suspicious Bluetooth connection or SSH session request during one

encounter does not confirm a Cabir or Ikee infection, but repetitive suspicious re-

quests spanning multiple encounters is a strong indication for malware infection. The
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imperfection of a single, local observation was previously in the context of distributed

IDS against slowly propagating worms [58].

Instead of assuming a sophisticated malware containment capability, such as

patching or self-healing [239, 125], we consider a simple “cut-off” strategy: If a node

i suspects another node j of being infected with the malware, i simply ceases to con-

nect with j in the future to avoid being infected by j. Our focus is on how individual

nodes shall make such cut-off decisions against potentially malware-infected nodes,

based on direct and indirect observations.

A comparable example from everyday experience is fire emergency. An early in-

dication, like dark smoke, prompts two choices. One is to report fire emergency im-

mediately; the other is to collect further evidence to make a better informed decision

later. The first choice bears the cost of a false alarm, while the second choice risks

missing the early window to contain the fire.

In the context of DTNs, we face a similar dilemma when trying to detect prox-

imity malware: Hyper-sensitivity leads to false positives, while hypo-sensitivity leads

to false negatives. In this chapter, we present a simple, yet effective solution, look-

ahead, which naturally reflects individual nodes’ intrinsic risk inclinations against

malware infection, to balance between these two extremes. Essentially, we extend the

Naive Bayesian model, which has been applied in filtering email spams [15, 93, 224],

detecting botnets [206], and designing IDSs [58, 5], and address two DTN-specific,

malware-related, problems.

1. Insufficient evidence vs. evidence collection risk. In DTNs, evidence (such as

Bluetooth connection or SSH session requests) is collected only when nodes come into

contact. But contacting malware-infected nodes carries the risk of being infected.

Thus, nodes must make decisions (such as whether to cut off other nodes and, if yes,

when) online based on potentially insufficient evidence.

2. Filtering false evidence sequentially and distributedly. Sharing evidence among

opportunistic acquaintances helps alleviating the aforementioned insufficient evidence

problem; however, false evidence shared by malicious nodes (the liars) may negate the
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benefits of sharing. In DTNs, nodes must decide whether to accept received evidence

sequentially and distributedly.

Our contributions are summarized below.

1. We present a general behavioral characterization of proximity malware, which

captures the functional but imperfect nature in detecting proximity malware (Sec-

tion 5.2).

2. Under the behavioral malware characterization, and with a simple cut-off mal-

ware containment strategy, we formulate the malware detection process as a dis-

tributed decision problem. We analyze the risk associated with the decision, and

design a simple, yet effective, strategy, look-ahead, which naturally reflects individ-

ual nodes’ intrinsic risk inclinations against malware infection. Look-ahead extends

the Naive Bayesian model, and addresses the DTN-specific, malware-related, “insuf-

ficient evidence vs. evidence collection risk” problem (Section 5.3.1).

3. We consider the benefits of sharing assessments among nodes, and address

challenges derived from the DTN model: liars (i.e., bad-mouthing and false-praising

malicious nodes) and defectors (i.e., good nodes that have turned rogue due to mal-

ware infections). We present two alternative techniques, dogmatic filtering and adap-

tive look-ahead, that naturally extend look-ahead to consolidate evidence provided by

others, while containing the negative effect of false evidence. A nice property of the

proposed evidence consolidation methods is that the results will not worsen even if

liars are the majority in the neighborhood (Section 5.3.2). Real contact traces are

used to verify the effectiveness of the methods (Section 5.4).

5.2 Model

Consider a DTN consisting of n nodes. The neighbors of a node are the nodes it

has (opportunistic) contact opportunities with.

Proximity malware is a malicious program that disrupts the host node’s normal

function and has a chance of duplicating itself to other nodes during (opportunistic)
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contact opportunities between nodes in the DTN. When a duplication occurs, the

other node is infected with the malware.

In our model, we assume that each node is capable of assessing the other party

for suspicious actions after each encounter, resulting in a binary assessment. For ex-

ample, a node can assess a Bluetooth connection or a SSH session for potential Cabir

or Ikee infection. The watchdog components in previous works on malicious behavior

detection in MANETs [135] and distributed reputation systems [140, 35] are other

examples. A node is either evil or good, based on if it is or is not infected by the mal-

ware. The suspicious-action assessment is assumed to be an imperfect but functional

indicator of malware infections: It may occasionally assess an evil node’s actions as

“non-suspicious” or a good node’s actions as “suspicious”, but most suspicious actions

are correctly attributed to evil nodes. A previous work on distributed IDS presents an

example for such imperfect but functional binary classifier on nodes’ behaviors [58].

The functional assumption characterizes a malware-infected node by the assess-

ments of its neighbors. If node i has N (pair-wise) encounters with its neighbors and

sN of them are assessed as suspicious by the neighbors, its suspiciousness Si is de-

fined as:

Si = lim
N→∞

sN
N

. (5.1)

By Equation (5.1), Si ∈ [0, 1]. A number Le ∈ (0, 1) is chosen as the line between

good and evil. Le depends on the quality of a particular suspicious-action assessment

and, if the assessment is a functional discriminant feature of the malware and the

probabilistic distribution of the suspiciousness of both good and evil nodes are known,

Le can be chosen as the (Bayesian) decision boundary, which minimizes classification

errors [66]. Node i is good if Si ≤ Le, or evil if Si > Le: We draw a fine line between

good and evil, and judge a node by its deeds.

Instead of assuming a sophisticated malware coping mechanism, such as patch-

ing or self-healing, we consider a simple and widely applicable malware containment

strategy: Based on past assessments, a node i decides whether to refuse future con-

nections (“cut off”) with a neighbor j.
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5.3 Design

In the following discussion, we investigate the decision process of a node i, which

has k neighbors {n1, n2, . . . , nk}, against a neighbor j; with no loss of generality, let

j be n1.

5.3.1 Household Watch

Consider the case in which i bases the cut-off decision against j only on i’s own

assessments on j. Since only direct assessments are involved, we call this model house-

hold watch (the naming will become more evident by the beginning of Section 5.3.2).

Let A = (a1, a2, . . . , aA) be the assessment sequence (ai is either 0 for “non-

suspicious” or 1 for “suspicious”) in chronological order, i.e., a1 is the oldest assess-

ment, and aA is the newest one.

Bayes’ theorem tells us:

P (Sj|A) ∝ P (A|Sj)× P (Sj). (5.2)

P (Sj) encodes our prior belief on j’s suspiciousness Sj; P (A|Sj) is the likelihood of

observing the assessment sequence A given Sj; P (Sj|A) is the posterior probability,

representing the plausibility of j having a suspiciousness of Sj given the observed

assessment sequence A. Since the evidence P (A) does not involve Sj and serves

as a normalization factor in the computation, we omit it and write the quantitative

relationship in the less cluttered proportional form1.

We have the following observations:

• By the principle of maximal entropy [109] (which states that, subject to known

constraints, or testable information, the probability assignment that best repre-

sents our state of knowledge is the one which maximizes the entropy, as defined

by Shannon [181]), before obtaining any assessment, a node i, which holds no

1When we use proportional form in this chapter, we have implicitly done the same thing.
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presumption on another node j’s suspiciousness, should assign a uniform dis-

tribution to the prior P (Sj), which is:

P (Sj) = 1, (5.3)

since, by definition, Sj ∈ [0, 1]. Any other assignment of P (Sj) reflects preju-

dice that i holds against j, which is not warranted by our assumption on the

background knowledge B.

• The independence between pairs of assessments implies the equivalence of batch

and sequential computation for P (Sj|A). If we apply the assessment sequen-

tially by using the posterior of the previous round as the prior of this round, we

have:

P (Sj|A) = P (Sj|a1, . . . , aA)

∝ P (aD|Sj, a1, . . . , aD−1)

× P (Sj|a1, . . . , aA−1)

= P (aD|Sj)× P (Sj|a1, . . . , aA−1)

. . .

∝ P (Sj)
D∏

k=1

P (ak|Sj).

(5.4)

By the definition of suspiciousness Sj and the independence among assessments,

we have:

P (ak|Sj) =

 Sj for ak = 1

1− Sj for ak = 0
. (5.5)

By Equations 5.3, 5.4, and 5.5, we obtain Equation 5.6:

P (Sj|A) ∝ SsA
j (1− Sj)

|A|−sA (5.6)
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in which sA is the number of suspicious assessments in A (i.e., the assessments equal

to 1), and |A| is the number of assessments collected so far.

By Equation 5.6, we can calculate the Sj ∈ [0, 1] which maximizes P (Sj|A). Let

a = sA and b = A − sA. If a = 0 and b 6= 0, Sj = 0 is the maximizer; conversely, if

a 6= 0 and b = 0, Sj = 1 is the maximizer. If both a and b are both non-zero, let C

be the normalization constant in Equation 5.6 (which is a constant for Sj), we have:

dP (Sj|A)
dSj

=
d

dSj

(
CSa

j

b∑
k=0

(
b

k

)
(−Sj)

k

)

= CaSa−1
j

b∑
k=0

(
b

k

)
(−Sj)

k

− CbSa
j

b−1∑
k=0

(
b− 1

k

)
(−Sj)

k

= CSa−1
j (1− Sj)

b−1 (a(1− Sj)− bSj) .

The unique S ∈ (0, 1) which makes d
dSj

P (Sj|A) = 0 is the Sj which satisfies a(1 −

Sj)− bSj = 0, i.e., Sj =
a

a+b
. Moreover, it maximizes P (Sj|A), even when either a or

b (but not both) is zero. Therefore, we have:

argmax
Sj∈[0,1],A6=∅

P (Sj|A) =
sA
|A|

, (5.7)

Figure 5.1 shows the normalized posterior distributions P (Sj|A) for assessment

samples with different sizes, given by Equation 5.6. In each case, the ratio between

suspicious and non-suspicious assessments is the same, i.e., 1:3; by Equation 5.7,

Sj =
1

1+3
= 0.25 is the maximizer of P (Sj|A), which is clearly shown in Figure 5.1.

The distribution becomes sharper with a larger sample, which accords to the intuition

of the increasing certainty on the suspiciousness Sj.

The uncertainty over j’s suspiciousness Sj (and, hence, the risk of losing a good

neighbor) holds i back from cutting j off immediately, based on insufficient evidence.

In the following discussion, we consider two alternative approaches, distribution and
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Figure 5.1.: The normalized posterior distribution P (Sj|A) for assessment samples
with different sizes. The two numbers for each line in the legend show the number
of suspicious and non-suspicious assessments, respectively. In each case, the ratio
between suspicious and non-suspicious assessments is 1 : 3. All distributions have a
maximal value at Sj = 1

1+3
= 0.25. However, the distribution becomes shaper with

a larger sample, which corresponds to a sense of increasing certainty regarding the
suspiciousness Sj.

maximizer, to handle the insufficient-evidence problem, based on Equations (5.6) and

(5.7), respectively.

In the distribution approach, i considers the whole posterior suspiciousness distri-

bution (Equation (5.6)) in making the cut-off decision against j. From i’s perspective,

after observing an assessment sequence A, the probability Pg(A) that j is good is:

Pg(A) =
∫ Le

0

P (Sj|A)dSj; (5.8)

the probability Pe(A) that j is evil is:

Pe(A) = 1− Pg(A) =
∫ 1

Le

P (Sj|A)dSj. (5.9)
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Let C = (
∫ 1

0
SsA
j (1 − Sj)

|A|−sAdSj)
−1 be the (probability) normalization factor in

Equation 5.6; we have:

Pg(A) = C
∫ Le

0

SsA
j (1− Sj)

|A|−sAdSj (5.10)

and

Pe(A) = C
∫ 1

Le

SsA
j (1− Sj)

|A|−sAdSj. (5.11)

One property of Pg(A) and Pe(A) that is of use later is their monotonicity on sA.

By Equations 5.8 and 5.9, we have Pg(A) = 1− Pe(A). Thus, we only need to prove

the monotonicity of any one of them; the other follows naturally. Here, we prove that

Pg(A) is a monotonically decreasing function on sA.

Let a = sA and b = A− sA; we only need to prove:

(

∫ 1

0

Sa
j (1− Sj)

b+1dSj)
−1
∫ Le

0

Sa
j (1− Sj)

b+1dSj

≥ (

∫ 1

0

Sa+1
j (1− Sj)

bdSj)
−1
∫ Le

0

Sa+1
j (1− Sj)

bdSj,

or, equivalently:

∫ 1

0

Sa+1
j (1− Sj)

bdSj

∫ Le

0

Sa
j (1− Sj)

b+1dSj

≥
∫ 1

0

Sa
j (1− Sj)

b+1dSj

∫ Le

0

Sa+1
j (1− Sj)

bdSj.

Subtract
∫ Le

0
Sa+1
j (1− Sj)

bdSj

∫ Le

0
Sa
j (1− Sj)

b+1dSj from both sides, we get:

∫ 1

Le

Sa+1
j (1− Sj)

bdSj

∫ Le

0

Sa
j (1− Sj)

b+1dSj

for the left side and:

∫ Le

0

Sa+1
j (1− Sj)

bdSj

∫ 1

Le

Sa
j (1− Sj)

b+1dSj
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for the right side. Finally, we have:

left =

∫ 1

Le

Sa+1
j (1− Sj)

bdSj

∫ Le

0

Sa
j (1− Sj)

b+1dSj

≥
∫ 1

Le

LeS
a
j (1− Sj)

bdSj

∫ Le

0

(1− Le)S
a
j (1− Sj)

bdSj

=

∫ Le

0

LeS
a
j (1− Sj)

bdSj

∫ 1

Le

(1− Le)S
a
j (1− Sj)

bdSj

≥
∫ Le

0

Sa+1
j (1− Sj)

bdSj

∫ 1

Le

Sa
j (1− Sj)

b+1dSj = right.

Thus, we have proven that “Pg(A) is a monotonically decreasing function on sA” and

“Pe(A) is a monotonically increasing function on sA”.

When Pg(A) ≥ Pe(A), the evidence collected so far (i.e., A) is favorable to j.

However, when Pg(A) < Pe(A), the evidence is unfavorable to j and suggests that j

might be an evil node. i needs to decide whether to cut j off.

The structure of the behavioral malware characterization model (specifically, a

single threshold Le is used to distinguish the nature of a node) gives rise to a subtlety

concerning i’s prejudice against j in the distribution approach. By Equation 5.7, if

i makes no presumption on j’s suspiciousness and no assessment has been made yet

(i.e., A = ∅), P (Sj|A) = 1. If LE 6= 0.5, by Equations (5.8) and (5.9), either

Pg(A) < Pe(A) (if LE < 0.5) or Pg(A) > Pe(A) (if LE > 0.5). In other words,

while i makes no presumption on j’s suspiciousness, i may nevertheless be prejudiced

against j by the distribution approach’s decision rule.

This leads to a discussion on whether such prejudices are warranted. The choice

of Le depends on the assessment mechanism itself and, as mentioned previously,

if the probabilistic distributions of suspiciousness of both good and evil nodes are

known, can be determined by minimizing Bayesian decision errors. If Le > 0.5,

the assessment mechanism is biased towards false positive (good nodes’ actions being

assessed as suspicious); if Le < 0.5, the assessment mechanism is biased towards false

negative (evil nodes’ actions being assessed as non-suspicious). However, before any

assessment is made, i has no clue about the true nature of j. A bias in the assessment
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mechanism should not affect the i’s neutrality on j’s nature before the first assessment

is made. Thus, we stipulate that the comparison between Pg(A) and Pe(A) should

be made only when A 6= ∅.

Alternatively, in the maximizer approach, i uses the suspiciousness distribution’s

maximizer (Equation (5.7)) when making the cut-off decision against j. The justi-

fication for the maximizer approach is that the suspicious distribution’s maximizer

is the single most probable estimation of j’s suspicisousness given the evidence. The

maximizer approach precludes the prejudice problem, because the maximizer is un-

defined when A = ∅. Similar to the distribution approach, i compares evidence that

is both favorable and unfavorable to j. Evidence A is favorable to j if sA/|A| ≤ Le

and is unfavorable to j if sA/|A| > Le. The maximizer approach significantly reduces

the computation cost, in comparison with the distribution approach, while partially

discarding information contained in the suspiciousness distribution derivable from the

evidence collected so far.

Whichever approach is taken, the cut-off decision problem has an asymmetric

structure in the sense that cutting j off will immediately terminate the decision pro-

cess (i.e., i will cease connecting with j; no further evidence will be collected), while

the opposite decision will not. Thus, we only need to consider the decision problem

when i considers cutting j off due to unfavorable evidence against j.

The cut-off decision is made based on the risk estimation of such a decision. The

key insight is that i shall estimate the cut-off decision’s risk by looking ahead.

More specifically, given the current assessment sequenceA = (a1, . . . , aA), the next

assessment aA+1 (which has not been taken yet) might be either 0 (non-suspicious)

or 1 (suspicious). Let A′ = (A, aA+1).

If aA+1 = 1, by the monotonicity of Pg(A) and Pe(A) on sA (proved in Section ??),

either Pg(A′) < Pg(A) < Pe(A) < Pe(A′) (the distribution approach) or sA′/|A′| =

(1 + sA)/(1 + |A|) > sA/|A| > Le (the maximizer approach): The evidence against j

becomes more unfavorable.



www.manaraa.com

86

However, if aA+1 = 0, the evidence might become either favorable or unfavorable

to j. If the evidence is still unfavorable toward j, we say that i’s decision of cutting

j off is one-step-ahead robust. If the cut-off decision is one-step-ahead robust, i is

certain that exposing itself to the potential danger of infection by collecting one

further assessment on j will not change the outlook that j is evil.

Similarly, i can look multiple steps ahead. In fact, the number of steps i is willing

to look ahead is a parameter of the decision process rather than a result of it. This

parameter shows i’s willingness to be exposed to a higher infection risk in exchange for

a higher certainty about the nature of j and a lower risk of cutting off a good neighbor;

in other words, it reflects i’s intrinsic risk inclination against malware infection.

Definition 2 (Look-ahead λ) The look-ahead λ is the number of steps i is willing

to look ahead before making a cut-off decision.

We can make a similar decision-robustness definition for look-ahead λ.

Definition 3 (λ-robustness) At a particular point in i’s cut-off decision process

against j (with assessment sequence A = (a1, . . . , aA)), i’s decision of cutting j off

is said to be λ-step-ahead robust, or simply λ-robust, if 1) the current evidence A

is unfavorable toward j; 2) even if the next λ assessments (aA+1, . . . , aA+λ)) all turn

out to be non-suspicious (i.e., 0), the evidence against j is still unfavorable.

Given the look-ahead λ, the proposed malware containment strategy is to cut j

off if the cut-off decision is λ-robust, and not to cut j off otherwise.

The look-ahead λ reflects individual nodes’ intrinsic risk inclinations against the

malware as follows.

λmust be large enough so that the decision process will not terminate prematurely.

For example, after the first suspicious-action assessment against J , depending on Le,

the evidence might become unfavorable toward j, and i will consider whether to cut

j off. If λ happens to be too small, depending on Le, the cut-off decision may be
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λ-robust at this very point (i.e., after the first assessment), and i will cut j off by the

decision rule. Thus, λ should be properly chosen to ensure the decision process will

bootstrap.

However, the look-ahead λ is related to the potential risk of being infected if the

look-ahead has been carried out. Suppose that i’s infection risk (against j) is R(n)

where n is the number of encounters between i and j; since direct contact is the only

propagation channel of the proximity malware, R(n) and n are positively correlated:

more encounters mean a higher risk of being infected. One reasonable instantiation

of R(n) is R(n) = 1− (1− p)n, where p is the (fixed) infection probability in a single

encounter.

Suppose that i’s cost of cutting j off (and hence losing j’s service) is Ci(j). To be

comparable with the instantiation R(n) = 1−(1−p)n, let 0 < Ci(j) < 1. Ci(j) reflects

the value of j’s service to i. One possible instantiation of Ci(j) is j’s social significance

as perceived by i. For example, i can collect past communication/forwarding records

or even initiate (opportunistic) local social community detection and use techniques

such as ego-betweenness [57] to estimate j’s social significance to i. The social cost

Ci(j) can be estimated once and kept fixed or can otherwise be updated regularly

throughout the decision process.

If the evidence is unfavorable toward j, the look-ahead λ can be chosen by λ =

max{n|R(n) ≤ Ci(j)} = max{n|1 − (1 − p)n ≤ Ci(j)}: i is willing to give j chance

(by looking λ steps ahead and hence not cutting j off immediately) as long as the

infection risk (positively correlated with λ) is less than the cost of losing j’s service (if

j is a good neighbor). Depending on the relation between the infection risk R(n) and

the social cost Ci(j), λ can be either static or dynamic across multiple encounters. To
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put it another way, a large λ is chosen as long as the (potential) benefit of maintaining

connection with j justifies the (infection) risk.

5.3.2 Neighborhood Watch

Besides using i’s own assessments, i may incorporate other neighbors’ assessments

in the cut-off decision against j. This extension to the evidence collection process

is inspired by the real-life neighborhood (crime) watch program, which encourages

residents to report suspicious criminal activities in their neighborhood. Similarly,

i shares assessments on j with its neighbors, and receives their assessments on j in

return.

In the neighborhood-watch model, the malicious nodes that are able to transmit

malware (we will see next that there may be malicious nodes whose objective is other

than transmitting malware) are assumed to be consistent over space and time. These

are common assumptions in distributed trust management systems (summarized in

Section 5.5), which incorporate neighboring nodes’ opinions in estimating a local trust

value.

By being consistent over space, we mean that evil nodes’ suspicious actions are

observable to all their neighbors, rather than only a few. If this is not the case, the

evidence provided by neighbors, even if truthful, will contradict local evidence and,

hence, cause confusions: Nodes shall discard received evidence and fall back to the

household watch model.

By being consistent over time, we mean that evil nodes can not play strategies

to fool the assessment mechanism. This is equivalent to the functional assumption

in characterizing the nature of nodes by suspiciousness (Equation 5.1). The case in

which the evil nodes can circumvent the suspiciousness characterization (such as by

first accumulating good assessments, and then launch an attack through a short burst

of concentrated suspicious actions) calls for game-theoretic analysis and design, and is

beyond the scope of this chapter. Instead, we propose a behavioral characterization



www.manaraa.com

89

of proximity malware; further game-theoretic analysis and design could base on this

foundation.

5.3.2.1 Challenges

Two cases complicate the neighborhood watch model: liars and defectors.

Liars are those evil nodes who confuse other nodes by sharing false assessments.

A false assessment is either a false praise or a false accusation. False praises under-

state evil nodes’ suspiciousness, while false accusations exaggerate good nodes’ sus-

piciousness. Furthermore, a liar can fake assessments on nodes that it has never met

with. To hide their true nature, liars may do no evil other than lying, and, therefore,

have low suspiciousness.

Defectors are those nodes that change their nature due to malware infections.

They start out as good nodes and faithfully share assessments with their neighbors;

however, due to malware infections, they become evil. Their behaviors after the

infection are under the control of the malware.

These complications call for evidence consolidation. Two extremal, but naive,

evidence-consolidation strategies are 1) to trust no one and 2) to trust everyone.

The former degenerates to the household-watch model with the twist of the defectors

(defectors change their nature and hence their behavioral pattern); the latter leads

to confusions among good nodes.

5.3.2.2 Evidence

For a pair of neighboring nodes i and j, let Ni and Nj be the neighbors of i and

j, respectively. At each encounter, i shares with j its assessments on the neighbor set

Ni − {j}, and j shares with i its assessments on the neighbor set Nj − {i}.
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Since the cut-off decision only needs to be made against a neighbor, i only considers

the assessments of its own neighbors Ni ∩ (Nj − {i}) from the evidence provided by

j. Without superimposed trust relationships among the nodes in the model, i and j

only share their own assessments, instead of forwarding the ones provided by their

neighbors.

5.3.2.3 Evidence Aging

The presence of defectors breaks the assumption when we characterize a node’s

nature by suspiciousness in Equation 5.1. A defector starts as a good node but turns

evil due to malware infections; the assessments collected before the defector’s change

of nature, even truthful, are misleading.

To alleviate the problem of outdated assessments, old assessments are discarded

in a process called evidence aging. Each assessment is associated with a timestamp.

Only assessments with timestamps less than a specific aging window TE from now

are included in the cut-off decision.

To see that the aging window TE alleviates the defector problem, consider a node

that is infected at time T . Without evidence aging, all evidence before T mounts to

testify that the node is good; if the amount of this prior evidence is large, it may

take a long time for its neighbors to find out about the change in its nature. In

comparison, with evidence aging, at time T + TE, all prior evidence expires and only

those assessments after the infection are considered, which collectively testify against

the node.

However, in practice, the choice of the aging window TE depends on the context.

While a small TE may speed up the detection of defectors by reducing the impact

of stale information, TE must be large enough to accommodate enough assessments
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to make a sound cut-off decision. If TE is too small, a node will not have enough

assessments to make a λ-robust cut-off decision.

5.3.2.4 Evidence Consolidation

We propose two alternative methods, dogmatic filtering and adaptive look-ahead,

for consolidating evidence provided by other nodes, while containing the negative

impact of liars. For exposition, we consider a scenario in which node i uses the

assessments within the evidence aging window [T − TE, T ] provided by i’s neighbors

(other than one of the neighbors, say, j) in making the cut-off decision against j.

The following observation inspires our solution: Given enough assessments, i is

more likely to correctly estimate j’s suspiciousness than otherwise. Consider a simple

numerical illustration. If j has in total 4 suspicious actions and 12 non-suspicious

actions assessed by its neighbors, its (true) suspiciousness is 4
4+12

= 0.25. If i has

made 4 out of the 4+ 12 = 16 assessments, by the space-consistency assumption, i is

equally likely to obtain any sub-sequence of the 16 assessment sequence. The total

possibilities of i making x (0 ≤ x ≤ 4) suspicious assessments and 4−x non-suspicious

assessments are
(
4
x

)(
12
4−x

)
; a straightforward calculation shows that the number is

maximized when x = 1. In other words, i is more likely to estimate j to be 1
1+3

= 0.25,

which agrees with the true suspiciousness, compared to otherwise.

In general, suppose j has been assessed n times by its neighbors, and s of them

are suspicious. Its suspicisousness, by definition, is s
n
. If n′ (0 < n′ ≤ n) of the

assessments are from i and s′ (s− (n− n′) ≤ s′ ≤ min(s, n′)) of them are suspicious

(thus, from i’s perspective, j’s suspiciousness is x′

n′ ), s
′ is more likely to be either b s

n
n′c

or d s
n
n′e (i.e., i’s estimation of j’s suspiciousness agrees with the true suspiciousness)

than otherwise, since, as in the previous numerical example,
(
s
s′

)(
n−s
n′−s′

)
is maximized

when s′

s
≈ n′−s′

n−s for a given n′.
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The implications are: 1. Given enough assessments, honest nodes are likely to

obtain a close estimation of a node’s suspiciousness (suppose they have not cut the

node off yet), even if they only use their own assessments. 2. The liars have to

share a significant amount of false evidence to sway the public’s opinion on a node’s

suspiciousness. 3. The most susceptible victims of liars are the nodes that have little

evidence.

Dogmatic filtering Dogmatic filtering is based on the observation that one’s

own assessments are truthful and, therefore, can be used to bootstrap the evidence

consolidation process. A node shall only accept evidence that will not sway its current

opinion too much. We call this observation the dogmatic principle.

Our interpretation of the dogmatic principle depends on the following generaliza-

tion of Definition 3.

Definition 4 (λ-robust judgment) Let A be the suspicious-action assessments that

i has on j. We say that i’s judgment on j’s nature is λ-robust (or (−λ)-robust) based

on A, if 1) the evidence A is favorable (or unfavorable) toward j, 2) the evidence

remains so even if the next λ assessments are all suspicious (or non-suspicious),

and 3) the evidence becomes unfavorable (or favorable) toward j if the next λ + 1

assessments are all suspicious (or non-suspicious).

As a special case, if a judgment is not even 1-robust (or (−1)-robust), we say that

the judgment is 0-robust or not robust at all.

λ-robust judgment reflects i’s certainty of its judgment on j’s nature (based on

the evidence collected so far). The λ-robust cut-off decision against j (Definition 3)

is equivalent to the (−λ)-robust judgment on the (evil) nature of j. The sign of λ

in Definition 4 represents j’s nature: A negative number represents evilness, and a

positive number represents goodness.

i’s cut-off decision against j works as follows with dogmatic filtering. 1. i will

not consider cutting j off until i has at least one assessment on j. 2. After its first

encounter with j and with its own assessments A with the evidence aging window
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[T−TE, T ], i considers whether or not to take another neighbor k’s alleged assessments

on j within the same window B when i and k meet. 3. Suppose that the judgment on

j’s nature is λA-robust and λ(A+B)-robust, based on A and (A + B), respectively. i

will take B only if λA 6= 0 and
|λA−λ(A+B)|

|λA|
≤ δ; δ > 0 and is called the dogmatism. 4. i

makes a λ-robust cut-off decision against j, based on either A or (A+B), depending

on whether B has passed the dogmatism test.

With dogmatic filtering, i is very conservative when its certainty about j’s nature

is still low (i.e., λA is small). At this early stage, i will accept the evidence provided

by j only if the evidence would not significantly change its certainty on j’s nature.

In particular, if λ ≤ 1, i will never accept a piece of evidence that would change its

judgment on j’s nature because |λA−λ(A+B)| > |λA| if A and (A+B) are of different

signs.

Dogmatic filtering significantly contains the impact of liars on i while still allowing

a change of certainty (on j’s nature) comparable to its own. The aforementioned

observation that the liars have to fabricate a significant amount of false evidence to

confuse honest nodes means that the evidence B provided by a liar k must have a high

λB (albeit of the wrong sign) to be effective in confusing i. The liar’s strategy will not

work because i will refuse to take B when |λA| is small with dogmatic filtering, while

λA and λB should be of different signs when λA is large (because by then, i should

have a close estimation of j’s true suspiciousness, and hence, λA is of the correct sign).

The evidence filtering works even when the liars are the majority among i’s neighbors.

Adaptive look-ahead Adaptive lookahead takes a different approach towards ev-

idence consolidation. Instead of deciding whether to use the evidence provided by

others directly in the cut-off decision, adaptive lookhead indirectly uses the evidence

by adapting the steps to look ahead to the diversity of opinion.

Adaptive look-ahead works as follows. 1. Suppose that at a particular moment,

the distribution maximizer derived from the assessments (within the evidence aging

window) on j (Equation (5.7)) made by i is s0; similarly, the distribution maximizer

derived from the assessments (within the evidence aging window) on j that i received
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from its neighbors is s1, s2, . . . , sn. 2. i computes the following ego-centric variance

σi as a metric on the diversity of opinions (from its own assessments):

σi =

√∑n
i=1(si − s0)2

n
. (5.12)

3. Let themaximal ego-centric variance up to (and including) now be σ∗i (thus, we have

σi ≤ σ∗i ). i makes its cut-off decision against j if the decision is f(σi, σ
∗
i , λ)-robust,

where f(·, ·, ·) is a three-parameter integer function ranging from 0 to λ, which we

call the adaptive-lookahead function. A particular instantiation is the linear adaptive

lookahead function.

f(σi, σ
∗
i , λ) = dλ

σi

σ∗i
e. (5.13)

The idea of adaptive look-ahead is to adapt the risk inclination, embodied in the

λ-robust cut-off decision in Definition 3, to the diversity of public opinions, embodied

in the ego-centric variance in Equation (5.12). The dogmatism principle underlies the

use of the ego-centric variance: The agreement of the public’s opinions with that of

i is an indication that i is approaching the true suspiciousness; thus, to expedite the

detection of evil nodes (and hence reduce the risk of infection from further contact),

i reduces the steps to look ahead in making the cut-off decision.

Because the value of the adaptive-lookahead function is no greater than 1, the

worst that liars can do is to degenerate i’s cut-off decision to a λ-robust one. Also,

since i has a chance of estimating a close-to-true suspiciousness than otherwise, liars’

false opinions are likely to be different from that of i, and good nodes’ opinions are

likely to agree with that of i. Thus, i will be more proactive if good nodes make up

the majority of its neighborhood and less so if the liars are the majority.
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Table 5.1.: Dataset statistics.

nodes entries time span avg. interval
Haggle 41 112, 295 15 days 12 secs

MIT reality 96 114, 046 490 days 371 secs

5.4 Experiment

5.4.1 Datasets

We verify our design with two real mobile network traces: Haggle [179] and MIT

reality [67].

The raw datasets are rich in information, some of which is irrelevant to our study,

e.g., call logs and cell tower IDs in MIT reality. Therefore, we remove the irrelevant

fields and retain the node IDs and time-stamps for each pair-wise node encounter.

Since the Haggle dataset has only 22, 459 entries spanning over 3 days, we repeat it

another 4 times to make it into a dataset with 112, 295 entries spanning over 15 days,

and thus make it comparable to the MIT reality dataset in quantity. Some statistics

of the processed datasets are summarized in Table 5.1.

5.4.2 Setup

Without loss of generality, we choose Le = 0.5 to be the line between good and

evil. For each dataset, we randomly pick 10% of the nodes to be the evil nodes and

assign them with suspiciousness greater than 0.5; the rest of the nodes are good nodes

and are assigned suspiciousness less than 0.5.

For a particular pairwise encounter, a uniform random number is generated for

each node; a node receives a “suspicious” assessment (by the other node) if the ran-

dom number is greater than its suspiciousness and receives a “non-suspicious” assess-
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Table 5.2.: Neighbor nature and cut-off decision combination.

. . . gets cut off. . . . stays connected.
An evil neighbor. . . True positive. False negative.
A good neighbor. . . False positive. True negative.

ment otherwise. Thus, each assessment is binary, while the frequency of “suspicious”

assessments for a particular node reflects its suspiciousness in the long term.

5.4.3 Performance Metric

The performance comparison is based on two metrics: detection rate and false

positive rate. The categories of the “neighbor’s nature” and “cut-off decision” com-

binations are shown in Table 5.2. For each combination, we sum up all the decisions

made by good nodes (evil nodes’ cut-off decisions are irrelevant) and obtain four

counts: TP (true positives), FN (false negatives), TN (true negatives), and FP

(false positives). The detection rate DR is defined as:

DR =
TP

TP + FN
× 100%,

and the false positive rate FPR is defined as:

FPR =
FP

FP + TN
× 100%.
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A high detection rate and a low false positive rate are desirable. When a balance

must be stricken between the two, one might be emphasized over the other, depending

on the context.

5.4.4 Results

5.4.4.1 Look-ahead: Distribution vs. Maximizer

We compare the two alternative approaches, distribution and maximizer, to the

look-ahead strategy (Section 5.3.1). The results are shown in Figure 5.2.

The look-ahead parameter λ reflects a node’s intrinsic (infection) risk inclination.

In both Haggle (Figures 5.2a and 5.2b) and MIT reality (Figures 5.2c and 5.2d), the

λ-robust cut-off strategy with a larger λ corresponds to a higher detection rate (in

the early stage for Haggle and throughout for MIT reality) and a significantly lower

false positive rate (for both datasets). In Haggle, the eventual detection rates for

all three look-ahead parameters are close to 100%. The difference in the eventual

detection rate between Haggle and MIT reality is attributed to the different contact

patterns in these datasets: The contact pattern in Haggle is more homogeneous than

that in MIT reality, in the sense that the variation of the interval between encounters

is significantly higher and a few nodes contribute most of the assessments in MIT

reality. Thus, the detection rate is more sensitive to the change of λ in MIT reality

than in Haggle.

In both datasets, the detection rate and false positive rate are comparable for the

distribution and maximizer approach, with the distribution approach having a slightly

higher detection rate and false positive rate. The small difference in performance,

coupled with the significant reduction in computation overhead (integration for the

distribution approach versus arithmetic operations for the maximizer approach), make
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(c) MIT reality.

2e+04 4e+04 6e+04 8e+04 1e+05

0
2

4
6

8
10

Encounter sequence

Fa
ls

e 
po

si
tiv

e 
ra

te
 (

%
)

1−robust, dist.
1−robust, max
3−robust, dist
3−robust, max
5−robust, dist
5−robust, max
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Figure 5.2.: Performance comparison between the λ-robust cut-off strategy with
the distribution (dist) and maximizer (max) evidence weighing approaches; λ =
1, 3, and 5.

the maximizer approach with a moderate λ as the preferred look-ahead strategy. In

the following sections, we show results for the maximizer approach with λ = 3.

5.4.4.2 Look-ahead

We compare Bayesian-based strategies with, and without, the look-ahead extension

(i.e., λ-robust cut-off decision) under the household-watch model (i.e., no evidence
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(c) MIT reality.
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Figure 5.3.: Performance comparison between the vanilla Bayesian (degenerated
0-robust) cut-off strategy and the 3-robust look-ahead cut-off strategy.

exchange). The vanilla Bayesian strategy does not look ahead and proceeds with

cutting-off once the evidence becomes unfavorable to the neighbor. It can be seen

as a degenerated λ-robust cut-off strategy with λ = 0. The results are shown in

Figure 5.3.
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In Figure 5.3, the vanilla Bayesian strategy has the highest detection and false

positive rate. Both rates drop with an increasing look-ahead parameter. However,

the false detection rate drops much faster than the detection rate. Indeed, for Haggle,

the 1-robust and the vanilla Bayesian strategies have almost the same detection rate

after 30, 000 encounters, but there is a 30% difference in the false positive rate. The

difference in detection rate is more pronounced for MIT reality, but the reduction

in false positive rate far outweighs that of detection rate. For the risk-taking nodes,

sacrificing a little detection rate for a large reduction in false positive rate is desirable:

the look-ahead parameter λ provides an effective mechanism to tune for a desirable

balance.

The results confirm the intuition that leads to the look-ahead extension to the

vanilla Bayesian strategy: Being conservative in making cut-off decisions (by looking

ahead) pays off by retaining utility without sacrificing much security.

5.4.4.3 Evidence Consolidation

We also evaluate the benefits of sharing assessments among nodes, and the effect

of the proposed evidence consolidation strategies in minimizing the negative impact

of liars on the shared evidence’s quality. We compare the dogmatic filtering (with

dogmatism of 0.0001, 0.01, and 1, respectively) and adaptive look-ahead evidence

consolidation methods with two other (naive) evidence consolidation methods: 1)

taking no indirect evidence, i.e., look-ahead with no evidence consolidation, and 2)

taking all indirect evidence without filtering.

In our study, 10% of the evil nodes play the dual roles of evil-doers and liars.

There are many possible liar strategies. Based on our observations in Section 5.3.2.4,

we adopt an exaggerated false praise/accusation liar strategy. More specifically, a

liar (falsely) accuses good nodes of suspicious actions and (falsely) praises other evil

nodes for non-suspicious actions. Besides, to exert a significant influence on the public

opinion, they exaggerate the false praises/accusations by 10 times (since they are only
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(a) Haggle.
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(c) MIT reality.
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Figure 5.4.: Performance impact of various evidence consolidation methods on the
look-ahead cut-off strategy. all : naive strategy without filtering (Section 5.3.2); dog-
matic δ: dogmatic filtering with dogmatism δ (Section 5.3.2.4); adaptive: adaptive
lookahead (Section 5.3.2.4).

10% of the whole population). The results on the performance of various evidence

consolidation strategies under this setting are shown in Figure 5.4.

Figure 5.4 clearly shows the negative impact of liars on malware detection if

evidence is not filtered: Under the influence of liars, the naive “all” strategy has a
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low detection rate and a high false positive rate. This calls for a non-trivial evidence

consolidation strategy to deal with the liars.

Both dogmatic filtering and adaptive look-ahead show significant increases in de-

tection rate and modest increases in false positive rate over the baseline 3-robust

lookahead strategy with no evidence filtering. Together with Figure 5.3, the re-

sults indicate that the 3-robust look-ahead, with either dogmatic filtering or adaptive

lookahead, is comparable in detection rate and, even in the presence of liars, shows

a significantly lower false positive rate in comparison with both the Bayesian and

1-robust strategies.

In Figure 5.4, the eventual detection rates converge to almost 100% for Haggle

but diverge for MIT reality. The convergence in detection rate is expected for a

homogeneous dataset like Haggle, in which most nodes are well-connected and are

able to collect enough evidence to eventually make a sound cut-off decision. In this

case, evidence consolidation helps to expedite the decision-making process without

driving the false positive rate up too much. A closer look at MIT reality indicates

that this dataset is highly heterogeneous: A few well-connected nodes contribute most

of the assessments, and leave the other less well-connected nodes with insufficient

evidence to make a λ-robust judgment alone. In this case, evidence consolidation

helps the latter nodes in collecting enough evidence to make a λ-robust decision.

Two of the dogmatic filtering strategies (with a dogmatism of 0.01 and 0.0001)

show almost the same performance, with the other dogmatic filtering strategy (with

a dogmatism of 1) show a slight difference in comparison with other strategies. In

both datasets, the adaptive look-ahead strategy shows an inferior performance in

comparison to the three variations of the dogmatic filtering strategy. However, it

automatically (i.e., with no parameter to tune) achieves superior detection rate over

both Bayesian and 3-robust strategies in the presence of liars.
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5.5 Related Work

Proximity malware and mitigation schemes. Su et al. collected Bluetooth traces

and demonstrated that malware could effectively propagate via Bluetooth with sim-

ulations [191]. Yan et al. developed a Bluetooth malware model [217]. Bose and Shin

showed that Bluetooth can enhance malware propagation rate over SMS/MMS [29].

Cheng et al. analyzed malware propagation through proximity channels in social net-

works [45]. Akritidis et al. quantified the threat of proximity malware in wide-area

wireless networks [6]. Li et al. discussed optimal malware signature distribution in

heterogeneous, resource-constrained mobile networks [126]. In traditional, non-DTN,

networks, Kolbitsch et al. [119] and Bayer et al. [23] proposed to detect malware with

learned behavioral model, in terms of system call and program flow. We extend the

Naive Bayesian model, which has been applied in filtering email spams [15, 93, 224]

, detecting botnets [206], and designing IDSs [58, 5], and address DTN-specific,

malware-related, problems. In the context of detecting slowly propagating Internet

worm, Dash et al. presented a distributed IDS architecture of local/global detector

that resembles the neighborhood-watch model, with the assumption of attested/hon-

est evidence, i.e., without liars [58].

Mobile network models and traces. In mobile networks, one cost-effective way

to route packets is via the short-range channels of intermittently connected smart-

phones [199, 37, 72]. While early work in mobile networks used a variety of simplistic

random i.i.d. models, such as random waypoint, recent findings [103] show that these

models may not be realistic. Moreover, many recent studies [57], based on real mo-

bile traces, revealed that a node’s mobility shows certain social network properties.

Two real mobile network traces were used in our study.

Reputation and trust in networking systems. In the neighborhood watch model,

suspiciousness, defined in Equation (5.1), can be seen as nodes’ reputation; to cut a

node off is to decide that the node is not trustworthy. Thus, our work can be viewed

from the perspective of reputation/trust systems. Three schools of thoughts emerge

from previous studies. The first one uses a central authority, which by convention is
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called the trusted third party. In the second school, one global trust value is drawn

and published for each node, based on other nodes’ opinions of it; eigenTrust [115] is

an example. The last school of thoughts includes the trust management systems that

allow each node to have its own view of other nodes [34, 188]. Our work differs from

previous trust management work in addressing two DTN-specific, malware-related,

trust management problems: 1) insufficient evidence vs. evidence collection risk and

2) sequential and distributed online evidence filtering.

5.6 Summary and Future Work

Behavioral characterization of malware is an effective alternative to pattern match-

ing in detecting malware, especially when dealing with polymorphic or obfuscated

malware. Naive Bayesian model has been successfully applied in non-DTN settings,

such as filtering email spams and detecting botnets. We propose a general behav-

ioral characterization of DTN-based proximity malware. We present look-ahead, along

with dogmatic filtering and adaptive look-ahead, to address two unique challenging in

extending Bayesian filtering to DTNs: “insufficient evidence vs. evidence collection

risk” and “filtering false evidence sequentially and distributedly”. In prospect, exten-

sion of the behavioral characterization of proximity malware to account for strategic

malware detection evasion with game theory is a challenging yet interesting future

work.
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6 WEB OF APKS (WOA): A DECLARATIVE APPROACH FOR STATIC

ANDROID PACKAGE (APK) BINARY ANALYSIS

Chapter 5 abstracts the mechanism of detecting proximity mobile malware in a prob-

abilistic behavioral model. This chapter supplements Chapter 5 with concrete inves-

tigation on a popular and real mobile computing platform, Android. This chapter

presents the design, implementation, and evaluation of a declarative approach for

static Android app binary analysis, which, among several other applications, supports

malware analysis on the Android platform. In light of existing literature (surveyed in

Section 6.2), the highlights of the proposed approach are: 1. the expressiveness and

efficiency of its query capability using a graph representation that captures key ele-

ments of Android apps’ semantics. 2. its robust handling of implicit control flows and

obfuscations to account for adversarial app analysis scenarios such as app plagiarism

detection and malware analysis.

6.1 Introduction

6.1.1 Problem Definition and Motivation

Initially released on 5 November 2007 [211] as the first product of the Open Hand-

set Alliance (an industry consortium of, as of January 2015, 84 “technology and

mobile companies” [7]), the Android mobile platform [12] has seen wide adoption

in the consumer market. Ephemeral market statistics [84] of “estimated worldwide

Android-based mobile device shipments reaching 1.4 billion units in 2015” aside, a

recent measurement study [205] on the official Android app market (i.e., Google Play

Store) that crawls over 1.1 million apps furnishes enough evidence on the scale of the
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current Android mobile platform. This tremendous growth is reflected by a surge of

academic research on the application [183, 184, 25, 116, 152] and, particularly, secu-

rity [204, 69, 236, 149, 228, 43] of the Android platform. The research body is too

numerous to be enumerated here; some recent representative works that are closely

related to the objective of this chapter are surveyed in Section 6.2.

The research objective of this chapter is to propose, implement, and evaluate

declarative graph analysis as a scalable and robust approach for identifying and ex-

plaining similarity between Android application packages (known by its acronym

“APK” in Android platform development documentation). Before moving on to

present the design (Sections 6.4 and 6.5) and evaluation (Section 6.6) of this work,

we first address the following questions:

• What do we mean by “similarity between APKs”?

• Why do we need to identify and explain such similarity?

• Why emphasizing the attributes “declarative, scalable, and robust?”

What do we mean by “similarity between APKs”? Similar APKs perform similar

functionality and/or share similar program structure due to, for example, identical

authorship, common libraries, or software theft/plagiarism. Apps instantiated from

similar APKs produce similar effects on the environment that include other apps and

the underlying Android system. A closely related concept from software engineer-

ing research is software birthmarks [142, 132, 20, 235, 215, 209, 110], defined as a

unique characteristic of a program that can be used “as a software theft detection

technique” [142] or “to determine the program’s identity” [110]—both focusing on es-

tablishing the identity or origin of programs for detecting software theft/plagiarism.

As we will discuss next, detecting similar APKs have wider practical applications

than software theft/plagiarism.
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Why do we need to identify and explain such similarity? Identifying similar APKs

is a common theme underlying several current research problems, which can be cat-

egorized into adversary scenario and non-adversary scenario.

Two prominent applications in adversary scenario are app plagiarism detection [62,

233, 55, 97, 234, 56, 229, 44, 225] and malware detection [85, 232, 164, 128, 219, 78, 16].

App plagiarism is a specialization of software theft/plagiarism (briefly discussed

above) in the domain of Android apps, with the idiosyncrasies of the Android platform

both simplifying (e.g., identifying platform API) and complicating (e.g., multiple-

entry and reactive nature of apps) the task (this will be elaborated in Sections 6.4

and 6.5). A major line of recent research [85, 164, 219, 78, 16] that uses machine

learning techniques for Android malware detection is based on the assumption that

malware has structural/behavioral similarity that can be captured by proper training

on a representative dataset [16]. The observation that real-world malware samples

often share common malicious payloads or code [237, 16] (due to, for example, black

market trading [77]) support the approach of detecting malware through similarity.

Applications in non-adversary scenario include app categorization [60, 216] (“this

app is a flashlight tool”) and app recommendation [54, 223, 208, 127] (“you might also

like these apps that provide similar functions”). A recent measurement study [205]

reveals inadequacies in current app market such as coarse granularity of categories,

mutual exclusion of categories in which apps may reasonably belong to multiple cate-

gories, and app authors may exaggerate or misrepresent their apps’ functionality and

quality for undeserved benefits. Identifying app similarity facilitate the categoriza-

tion and vetting of apps on the market.

Explaining “how a group of apps are related”, or result explainability/inter-

pretability, complements the identification of these apps and often provides insights

that are needed to vet the identification results (we will discuss concrete examples

later). Machine-learning-based techniques are often susceptible to the choice between

accuracy and interpretability. One treatise on this topic [31] puts this trade-off plainly

in its title “Machine learning: Between accuracy and interpretability.” The most accu-
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rate models in practice are rarely the most explainable ones [32]. Result interpretabil-

ity emerges as a main objective in recent Android malware detection research [85, 16].

Why emphasizing the attributes “declarative, scalable, and robust?” The size and

growth of the Android app market as revealed by recent measurement study of the

official Google Play Store [205] (and not to consider the numerous alternative mar-

kets such as Amazon Appstore [8]) leads to what researchers refer to as “a billion

opcode problem” [44, 97]: The number of Android apps, and the resources/opcodes

that determine their semantics, has grown to a scale that the performance gap be-

tween linear and quadratic complexity in processing and cross-examining them (such

as the task we are undertaking) make the difference between practical and imprac-

tical. Pair-wise comparison of apps that are used in early app plagiarism detection

works [62, 233, 55] do not scale well, and hence later works focus on improving this

aspect by, for example, localizing the search of similar apps (such as the use of Vin-

tage Point Tree [222] in detecting piggybacked apps [234]) or applying clustering

techniques to apps encoded in metric spaces [97].

Real-world app analysis rarely has access to app source code, and is often per-

formed in an uncooperative or even hostile scenario, in which the apps under analysis

employ techniques to prevent such analysis. One example is the real Android mali-

cious app analyzed in Section 6.3. A robust analysis is one that assumes an uncooper-

ative/hostile scenario by default, and can withstand certain anti-analysis attempts at

an affordable cost : As the adages “there is not free lunch” and “there is no panacea”

go, an app analysis that claims robustness must be clear on “what scenarios it ap-

plies to” and “at what cost.” We will elaborate on this point later concerning the

presented work.

The benefits of the declarative approach to computational problem solving [130]

are manifested in, for example, the standardization of SQL [59] for database queries

and the application of Prolog [50, 88] to artificial intelligence research. A declarative

approach to Android app analysis has the similar benefit of separation of concerns :

An analyst, who has the domain knowledge of which app features are pertaining to
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the task at hand, only needs to declare what features to find, rather than specify how

to find the features. As surveyed in details in Section 6.2, most existing works on

Android app analysis towards malware/plagiarism detection focus on specific aspects

of the “how,” and the support for “what”-style exploration receives little investigation.

An exception is the recent work by Feng et al. [78], in which the proposed system

supports using Datalog [4], a subset of Prolog, to find privacy-leaking apps. A major

objective/contribution of the present work is to advance the research on this front by

proposing a methodology and devising a software tool to support declarative APK

analysis.

The rest of the chapter presents an approach that addresses these aspects in the

task of identifying/explaining Android app similarity in specific, and of Android app

analysis in general.

6.1.2 A Preview of Declarative APK Analysis

This section presents two simple examples to illustrate the declarative graph anal-

ysis approach towards APK analysis, which is a central theme of this work. Figure 6.1

visualizes the result from issuing the following Neo4j [144] Cypher [145] query1:

MATCH (a:Apk) WHERE a.package="com.agewap.om"

MATCH (sk:SigningKey)-->a-->(d:Dex)-->(cp:Component)-->(cb:Callback)--(m:Method)

MATCH a-->(cgr:CallGraphNode)-[:INVOKE*..5]->(cgn:CallGraphNode)

return *

against a prototype million-node-scale Web of APKs (WoA) for Android malware

samples2 with the package name com.agewap.om (details will be explained in later

sections; we focus on the result here).

The result of this query indicates that:

1This is the first instance of a number of concrete queries presented in this work for result repro-
ducibility. Since the Neo4j graph database [144] and its Cypher graph query language [145] are used
in the current implementation of this work, concrete queries are presented in Cypher. Section 6.4.1.2
presents a short introduction to the query syntax.
2The prototypeWoA contains over 5, 000 Android malware samples from the Drebin [16] and Android
Malware Genome Project (AMGP) [236] projects. More evaluation using this prototype is presented
in Section 6.6.



www.manaraa.com

110

F
ig
u
re

6.
1.
:
T
h
e
re
la
ti
on

sh
ip

of
th
e
c
o
m
.
a
g
e
w
a
p
.
o
m
A
P
K

sa
m
p
le
s
in

th
e
p
ro
to
ty
p
e
W
eb

of
A
P
K
s.



www.manaraa.com

111

• Same authorship: There are 6 such samples, all signed by the same private key,

the SHA-256 checksum of which begins with CA:84:B6:FC:CC:1B.

• Not simple repackaging: The 6 samples contain different executable codes (Dalvik

EXecutables, or DEX, (the executable file format of Android’s Dalvik virtual

machine)) with different SHA-256 checksums.

• Structurally similar: All calls similar Java methods, including the Android API

method android.telephony.SmsManager.sendTextMessage.

• Shallow call graphs: All external API invocations are done in the entry Activity

callback method com.agewap.om.OperaMiniActivity.onCreate.

• No implicit control flows: All method calls are explicit invokes (i.e., the *-invoke

Dalvik VM instruction) rather than implicit ones (e.g., Java reflections [137]).

A real example of extensive implicit invokes is discussed in Section 6.3.

With the following query:

MATCH (a:Apk) WHERE a.package="com.agewap.om"

MATCH (p:Permission)<--a<--(t:Tag)

return *

we observe in Figure 6.2 that all 6 samples request the android.permission.SEND SMS

permission (i.e., to invoke SMS-sending API) and are flagged by multiple anti-virus

(AV) software vendors [207]. Some of the labels indicate that its maliciousness is

sending premium SMS without user’s consent, for example, the AhnLab3’s label is

Malicious/SmsSend.

These are simple examples of the insights about a group of APKs (and their

relationship) that can be answered by the work presented in this section. More

intricate examples and further evaluation are presented in later sections. What is

3http://ahnlab.com

http://ahnlab.com
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sk signing key

cp component

cb callback

md method

WoF Web of Fibers

C3G component callback
call graph

C3GE component callback
call graph extraction

WoA Web of APKs

Figure 6.3.: Web of APKs (WoA), which represents both “a declarative graph analy-
sis approach towards APK anlaysis” and “a system that implements this approach,”
consists of two interacting components: Web of Fibers (WoF) and Component Call-
back Call Graph Extraction (C3GE). Details of WoF and C3GE are presented in
Sections 6.4 and 6.5, respectively.

to be noted here is the declarative approach of addressing these questions, and the

simplicity of the queries that generate the results.

6.1.3 Objective

Figure 6.3 illustrates the essence of this work. Web of APKs (WoA), which rep-

resents both “a declarative graph analysis approach towards APK anlaysis” and “a

system that implements this approach,” consists of two interacting components: Web

of Fibers (WoF) and Component Callback Call Graph Extraction (C3GE). The func-

tion of and relation between these components are:

• A Fiber is a hierarchical property graph model of an individual APK sample

that consists of the following layers of structural nodes : signing key, APK,

DEX (Dalvik EXecutable; the executable format of APK), component classes

(components), component callback methods (callbacks), transitive invocatees of

the callbacks, call graph nodes, and method invocation instances (optional).
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• Auxiliary information, such as Android permissions defined or used by the APK,

Android intent filters that designate events to trigger component callbacks, and

arbitrary tags (such as data source, manual malware family labels, and anti-

virus software scanning results tags crawled from the VirusTotal service [207]),

are attached to Fiber for use in query refinement.

• The inter-procedural structural information extracted from an APK sample

by C3GE supplies both “the syntactic information for the lowest (transitive

invocatee) layer of a Fiber” and “the structural signature that complements the

syntactic information of the upper layers of a Fiber.”

• Fibers of the whole APK pool are “weaved” into a single Web of Fibers (WoF),

which can be declaratively queried against to answer APK analysis questions.

Essentially, by syntactic matching and structural signatures computed with the help

of C3GE, the Fibers of APKs are weaved into a single Web of Fibers, which can be

queried against to support the proposed declarative graph analysis approach towards

APK analysis. The “fiber weaving into a web” metaphor gives each part its name.

Given this, the objective of this chapter is to demonstrate that:

The declarative approach as proposed and implemented in Web of APKs

(WoA) is an effective approach for identifying and explaining similarity

between APKs.

To support the objective, we first review existing literature (Section 6.2) in the

following lines of research on the Android platform: app repackaging/plagiarism de-

tection (Section 6.2.1), malware detection (Section 6.2.2), dynamic app analysis (Sec-

tion 6.2.3), and APK obfuscations (Section 6.2.4). Analysis of a real Android mal-

ware sample is presented in Section 6.3, which, besides elucidating some real malware

detection evasion techniques and demonstrating the need for more robust APK anal-

ysis tools (a need that this work attempts to meet), also serves as a concrete running

example in the following sections. We then present the model, design, and algorithms
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of the two pillars of this work—Web of Fibers (WoF) and Component Callback Call

Graph Extraction (C3GE)—in Sections 6.4 and 6.5, respectively. Evaluation using

a million-node-scale Web of APKs modeling over 5,000 Android malware samples is

presented in Section 6.6.

6.1.4 Contribution

The chapter makes the following contributions.

• Propose and implement a declarative approach (Web of APKs/WoA) to Android

APK analysis, which formulates the “similar APK identification and explana-

tion” task as a graph analysis problem.

• Propose and implement a set of static-analysis techniques for:

– Detecting and resolving (external-dependency-free) implicit control flows

on Android that include Java reflections and Java/Android asynchronous

threads/tasks.

– Extracting Component Callback Call Graphs (C3Gs) with explicit consid-

erations for adversary scenarios such as malware analysis.

• The improved inter-procedural control flow extraction capability of these tech-

niques combined together over the popular Androguard APK analysis tool [62,

63] used in multiple previous works [85, 164, 105, 163, 219] is demonstrated on

real Android malware samples. Obfuscation robustness is analyzed and evalu-

ated against the obfuscators in ADAM APK obfuscation framework [231].

• Build a million-node-scale Web of APKs modeling over 5,000 Android malware

samples and evaluate the proposed methodology over it.

In addition, the underlying implementation expounded in this chapter is publicly

released 4 in both source and executable formats for result reproducibility [150] and

4https://github.com/pw4ever/web-of-apks

https://github.com/pw4ever/web-of-apks
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future extensions. Thus, the chapter and the implementation are a symbiotic pair:

The implementation provides results and supports reproducibility of the chapter; the

chapter documents the motivation, algorithms, design trade-offs, and internals of the

implementation.

6.2 Related Work

In this section, we review a few lines of research on Android app/APK analysis

that closely relate to the work presented in this chapter: app repackaging/plagiarism

detection (Section 6.2.1), malware detection (Section 6.2.2), dynamic app analysis

(Section 6.2.3), and APK obfuscations (Section 6.2.4).

6.2.1 Android App Repackaging/Plagiarism Detection

Desnos [62] defines a Dalvik bytecode similarity metric based on Normalized Com-

pression Distance (NCD) [48] and applies it to find lists of identical, similar, and

new/deleted methods between a pair of Android apps. NCD is a symmetric simi-

larity metric between a pair of strings that is based on the idea that compressing

the concatenation of two similar strings will produce a shorter output than if the two

strings are not similar. The essence of this work are: 1. For each method of an APK

sample, generate a string that encode a (linearized) control flow graph, external API

(Android/Java) invocations, and Java exceptions. 2. Use NCD to compute similarity

between a pair of such strings. 3. Similar strings correspond to similar methods.

Zhou et al. adapt Context Triggered Piece-wise Hashing (CTPH) [120] in their

DroidMOSS [233] system to measure pair-wise similarity of apps for detecting app

repackaging. The essence of this work are: 1. Split each long sequence of executable

code into short sequences when the hash value of a sliding window is prime; this

procedure is named “resetting” in the paper. 2. Local changes, such as insertion of

an invocation instruction in a repackaged app, is localized by the sliding windows

and resetting criteria. 3. Hashes of the short sequences are concatenated, and the
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edit distance [36] of two such concatenated hashes are their corresponding code’s

similarity. 4. Only the opcode, rather than the easily replaceable operands, of each

code piece is used in computing the above hashes.

Crussell et al. use Program Dependence Graphs (PDGs) [79] in their DNADroid [55]

system to detect similar apps with different authorship, or app “clones” as called in the

paper. The essence of this work are: 1. Convert Android app code from (Android’s)

DEX format into (Java’s) JAR format using the tool dex2jar [194]. 2. Remove com-

mon libraries from the code by Java package name and code checksum. 3. Use the

existing Java analysis framework WALA [41] to extract the data dependency part

of PDGs. 4. The justification of not including the control flow part of PDGs is “so

that our detection is more robust against statement reordering, insertion and dele-

tion” [55]. 5. Apply heuristics (called “filters” in the paper) to remove pairs of apps

that are unlikely to be clones from the pair-wise comparison; one example of such

heuristics is to remove PDGs that have less than 10 nodes. 6. Use the VF2 subgraph

isomorphism algorithm [52] to identify isomorphic subgraphs in the PDGs, and use

the node number ratio of isomorphic subgraphs in the PDGs as app similarity score.

Hanna et al. use k-gram feature of code sequence and feature hashing in their

Justapp[97] system to detect method-level similarity between Android apps. The

essence of this work are: 1. Extract basic blocks of each Java method from the

APK. 2. Hash every k opcodes, along with all constant operands (but not variable

operands), and set a corresponding bit in a feature bit-vector of the method. 3. The

justification of dropping variable operands but retaining constant operands is that

variable operands are easily changeable but constant operands may contain control

flow information as used by Java’s reflection mechanism [46]. 4. Use agglomerative

hierarchical clustering [61] on the aforementioned feature bit-vector to group similar

apps together.

In their PiggyApp [234] system, Zhou et al. identify one type of app repackaging

(what they call “piggybacked” apps), characterized by the relative independence of

the added code (the “rider”) with the original apps (the “carrier”), and propose to
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identify pigbacked apps by isolating and comparing the primary module (correspond-

ing to the carrier) for similarity. The essence of this work are: 1. Build a weighted

graph of Java packages that represents Java package’s data/control dependence (in-

cluding class inheritance, package homogeny, method calls, and member field refer-

ences). 2. Use agglomerative clustering algorithm to group class packages into dif-

ferent modules. 3. Use information declared in AndroidManifest.xml to determine

the primary modules, and use identifier (string) similarity to break tie. 4. Generate

a bit vector (the feature vector) of the primary modules that representing the pres-

ence/absence of the following features: Requested permission, Android API calls,

intent types, use of native code/external classes, and authorship information. 5. Em-

bed the bit vector into a metric space, and use Jaccard distance of primary module

feature vectors as similarity score of apps. 6. Use Vantage Point Tree (VPT) [222] as

the metric space representation to reduce complexity from O(n2) to O(n log n).

In AnDarwin [56], Crussell et al. base on works of Gabel et al. [82] and Jiang

et al. [112] to extract “semantic vectors” (histogram of code type frequencies) and

identifying similar code using Locality Sensitive Hashing (LSH) [9]. The essence

of this work are: 1. Split data dependency graph by connected components (the

“semantic blocks”) and use the histograms of code type frequencies (the “semantic

vector”) as the feature of each semantic block. 2. Semantic blocks with fewer than

10 nodes are discarded to reduce program size, “because they represent trivial and

uncharacteristic code.” 3. LSH are applied to each group of similarly sized semantic

vectors (another heuristics to reduce problem size) to identify similar semantic vectors.

4. Common libraries are identified by their frequencies in all semantic vectors, and are

removed from the data feeding to the next stage. 5. MinHash [33] are used to compute

an efficient approximation to Jaccard-distance-based distance between pair-wise apps.

In FSquaDRA [229], Zhauniarovich et al. use non-code resources contained in

APKs for app repackaging detection to eschew the computational complexity as-

sociated with code analysis. This is also used by Viennot et al. in their large-scale

study [205] of the Google play store for detecting repackaged apps.
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Unlike several of the methods mentioned above that eschew control flow graph

(CFG) in favor of data dependence graph (DDG), in their work [44], Chen et al.

embed Java-method-level CFG of apps (the “3D-CFG”) into a 3-dimensional metric

space, and use a weighted centroid (center of mass) of the 3D-CFG to represent the

underlying method. Similarity of app methods is computed from the distance between

their 3D-CFG centroids. Scalability is derived from the observed “centroid effect”, i.e.,

proximity of centroids is positively correlated with method similarity, and is achieved

by localizing the search space to similar methods with centroids that are proximate

in the embedding metric space.

In ViewDroid [225] by Zhang et al., a “featured view graph” is constructed from

each APK sample, and app repackaging/plagiarism detection is performed pair-wisely

on the corresponding featured view graphs with subgraph isomorphism. A featured

view graph consists of user interface views (corresponding to Java classes that are

derived from android.app.Activity in Android) as nodes and the transition rela-

tionship between the views as edges; Android APIs and the event callback method

that triggers view transition are used to label the nodes and edges, respectively. Like

in Crussell et al.’s work [55], the VF2 [52] subgraph isomorphism detection algorithm

is used for this purpose, perhaps due to the availability of its implementation [114].

6.2.2 Android Malware Detection

Zhou et al. propose and implement a set of heuristics, including risky permission

request and dynamic Java class or native library loading, for detecting suspicious

behaviors in DroidRanger [237]. The suspicious apps are further manually triaged to

determine whether they are malicious. The discovered malware samples are collected

and released as the Android Malware Genome Project (AGMP) [236], which is highly

cited and also used in evaluating the present work, as presented in Section 6.6.

In their work [85], Gascon et al. use Androguard to extract call graphs from

APK, label each extracted method with a 15-dimensional binary vector that represent
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Dalvik bytecode categories that are used in that method, and use a procedure inspired

by neighborhood hash graph kernel (NHGK) [100] to encode 1-hop neighborhood of

each method on the call graph. Histograms of neighborhood hashes are used as the

kernel function for a linear support vector machine (SVM) [192] classifier to classify

malware.

In DroidMiner [219], Yang et al. propose a two-tier graphical model to capture be-

havioral modality of Android apps. The upper layer, Component Dependency Graph

(CDG), represent interactions among the four types of Android components (Activi-

ties, Services, Broadcast Receivers, and Content Observers). The lower layer, Compo-

nent Behavior Graph (CBG), “represents control-flow logic of those permission-related

Android and Java API functions, and actions performed on particular resources of

each component.” [219] Malware modalities are defined as ordered sequence of sen-

sitive functions from known malware samples’ behavior graphs, and the detection

of malware is formulated as an association rule mining [101] problem from modal-

ities to malicious behaviors. Although the implementation is not (yet) released, it

is mentioned specifically that “DroidMiner extracts it callee methods by analyz-

ing the invoke-kind instruction (e.g., invoke-virtual nad invoke-direct) used in the

method.” [219]

In Apposcopy [78], Feng et al. combine static taint analysis with a program rep-

resentation called inter-component call graph (ICCG) to derive control/data flow

signatures of privacy-leaking malware. A Datalog [4]-based specification language

is proposed for querying whether app samples match signatures of known malware

families.

In Drebin [16], Arp et al. extract multiple textual features, including hardware

components, requested permission, app components, intents, API calls, used per-

mission, network addresses, from app’s manifest and executable code, and build a

high-dimensional metric space consisting of binary dimensions (indicating whether a

textual feature appears in the app sample). Linear SVM is trained and applied as a

malware classifier, and the dimensions that contribute the most to the classification
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are extracted as explanations for the results. A contribution made in this work is

the release of a 5,000+ malware dataset, which subsumes the aforementioned AGMP

dataset (sans the malware family labels). This dataset is also used in building the

prototype WoA that is evaluated in Section 6.6.

Some other works on Android malware detection includes the following. Zheng

et al. propose a 3-level signatures for identifying Android apps: The method-level

signature is a hash of a method’s Android API call sequence; the class-level sig-

nature is sorted concatenation of method-level signatures; the app-level signature

is concatenation of class-level signatures of the classes that are used in the APK.

Protsenko and Müller propose to use software complexity metrics from software engi-

neering research, such as McCabe’s Cyclomatic Complexity [136] and the Chidamber

and Kemerer Metrics Suite [47], for Android malware detection [164].

Also related to the present work is a line of works that uses app’s requested

permission [68, 22, 76, 18, 178, 149, 86, 87] or “requested permission plus de-compiled

source code” [40] for risk assessment. These works and the present work complement

each other by providing better information extraction and processing capabilities.

6.2.3 Dynamic Android App analysis

TaintDroid [70] is a highly cited work that brings privacy leak in Android to

the attention of security research community and technology media circles. The

abundance of personal and private information about their users on Android devices,

coupled with the well-specified and standard app execution environment on Android,

make the sources (e.g., the IMEI phone identifier) and sinks (e.g., out-going Internet

connection) of sensitive information straightforward to identify and, therefore, the

privacy leak problem well defined: Any sensitive information that is obtained from

some source and eventually flow into some sink constitutes a potential privacy leak.

The word “potential” in the aforementioned definition of privacy leak is underlined

by AppIntent [221], which differentiates between “user-intended data transmission”
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and “unintended data transmission.” AppIntent presents a symbolic execution tech-

nique called event-space constraint guided symbolic execution to derive the UI actions

that trigger sensitive data transmission; these UI actions are reported as context in-

formation for the analyst to decide whether the data transmission is intended by user

or not—only the latter case is designated as a privacy leak.

Another contribution of TaintDroid is that it first implements and demonstrates

the use of a venerable system analysis technique, taint analysis (the TaintDroid pa-

per [70] has a succinct but extensive survey on previous applications of taint analysis),

in Android. TaindDroid’s dynamic taint analysis implementation is adopted by later

works such as AppsPlayground [168].

Static taint analysis is an alternative to the approach taken by TaintDroid. The

advantage of the static approach is (its potential of being) more comprehensive in

coverage (due to the reactive nature of Android framework, the coverage of the static

approach highly depends on the sophistication of the implementation) and that it

will not be detected and countered by malicious apps. FlowDroid [17, 81] is a recent

work that addresses the main concern of static taint analysis—fidelity of the static

tainting model. More specifically, FlowDroid presents a static tainting model with

“context, flow, field, and object sensitivity” that handles callbacks invoked by the

Android framework and reduces false alarms. Another contribution of FlowDroid is

to present an open taint-analysis benchmark called DroidBench.

Another line of works, started by DroidScope [218] and followed up by, for ex-

ample, CopperDroid [170], focuses on understanding malicious app’s behaviors by

reconstructing app semantics through virtual machine introspection (VMI) tech-

niques. The advantage of these “out-of-the-box” malware analysis frameworks is their

transparency—they are invisible to even priviledged malware in the system under

observation. DroidScope demonstrates the capability of tracing system calls, dalvik

virtual machine instruction traces, and Android API invocations, while CopperDroid

focuses on tracing system calls and inter-process communications (IPCs) through

the Android-specific Binder mechanism. However, their advantage in transparency
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through being “out-of-the-box” also restricts their applicability to environments which

can be effectively virtualized and instrumented, in other words, in Android’s own

emulators. Porting these works to different emulators (for example, the Genymo-

tion emulator5) or even a different version of Android is a non-trivial effort—this is

demonstrated by the incomplete port of DroidScope to Android 4.3 (Jellybean) from

their original 2.3 (Gingerbread) version as of June 20146

The event-driven nature of Android apps breaks the linearity of traditional batch-

processing programs, and requires specific testing of its GUI-driven behaviors for

thoroughness. Early works on Android UI testing [104] adapts the widely applied

fuzzing testing technique (which essentially tests the app against numerous randomly

generated and, sometimes, ill-formed input events). AppInspector [90] mentions the

use of symbolic execution for more thoroughly exercising GUIs.

Later works, such as SmartDroid [230], Dynodroid [133], and AppsPlayground [168],

focus on improving the efficiency and effectiveness of UI testing by “being less random

and more guided.” SmartDroid focuses on identifying UI-based trigger conditions

of sensitive behaviors in Android apps, with the intention of combining with pri-

vacy leak detector such as TaintDroid to reveal such leaks. The main idea is to use

statically extracted “activity activation” and “function call graphs” to trim the expo-

nentially growing condition space. Dynodroid instruments the Android framework to

observe UI event responses of apps, and therefore forms an “observe-select-execute”

loop at the granularity of single input events. AppsPlayground incorporates Taint-

Droid for privacy leak detection and presents a heuristics to de-duplicate UI element

identifications.

Some other ideas that have been explored include the followings. Crowdroid [38]

presents the idea of crowsourcing Android app analysis to detect apps that “have the

same name/version but behave differently” as an indicator of trojan-horse infection.

Whyper [148] applies Natural Language Processing (NLP) analysis of human-oriented

app metadata (e.g., description on Play Store) to decide whether a requested permis-

5http://www.genymotion.com/
6https://code.google.com/p/decaf-platform/wiki/DroidScope

http://www.genymotion.com/
https://code.google.com/p/decaf-platform/wiki/DroidScope
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sion is warranted. AsDroid [106] detect apparent discrepancies of the human-oriented

metadata (e.g., the text of a Button widget) and the triggered function of UI elements

to identify app’s stealthy behavior.

6.2.4 APK Obfuscations

APK obfuscations are techniques that transform APK binaries between different

forms while preserving the app semantics. The official Android development envi-

ronment integrates into the app development process a tool named ProGuard that

“shrinks, optimizes, and obfuscates your code by removing unused code and renam-

ing classes, fields, and methods with semantically obscure names.” [14] As discussed

below, works on APK obfuscations often adapt ideas from earlier research on Java

program obfuscations [227, 102, 176, 51, 131] due to Android’s root in Java: The of-

ficially supported development process begins with Java source code, and first goes

through Java compilation before eventually compiled to the Android Dalvik virtual

machine bytecodes. App plagiarists and malware authors obfuscate their apps to

evade detection. Benign app authors obfuscate their apps to increase the difficulty

of plagiarization. Even without such intentions, the generated app binaries could by

changing/upgrading app build toolchain or enabling aggressive optimization during

the build process.

In their work on stress-testing Android anti-virus systems [231], Zheng et al. dis-

cusses two broad categories of obfuscation techniques: repackaging and bytecode-level

obfuscations. More specifically, repackaging techniques include: 1. Realigning un-

compressed data within an APK file on n-byte boundaries so that all portions can be

directly memory mapped. Android’s built-in zipalign tool uses n = 4 by default, and

Zheng et al. uses n = 8. 2. Resigning APK with uncertified private keys with keytool

and jarsigner tools. 3. Unpacking and rebuilding the APK, which, besides the dif-

ference in signing key as above, may generate a different APK due to the difference

in build environment/toolchain. Bytecode-level obfuscations include: 1. Inserting de-



www.manaraa.com

125

funct methods to change the method table in the Dalvik EXecutable (DEX) binary

contained in APK. 2. Renaming methods to evade method-name matching. 3. Insert-

ing goto instructions to change the control flow within a method. 4. Applying simple

string obfuscation such as alphabet rotation to evade direct string matching.

In DroidChameleon [169, 167], Rastogi et al. present a more extensive sets of ob-

fuscation techniques that include repackaging and the following two classes of obfusca-

tion, named “transformation attacks detectable by static analysis (DSA)” and “trans-

formation attacks non-detectable by static analysis (NSA)” by the author. 1. DSA:

package/identifier renaming, call indirections, code reordering, junk code insertion,

function outlining/inlining, payload obfuscations 2. NSA: Java reflections, bytecode

encryption using dynamic class loaders.

In PANDORA [163], besides some common obfuscation techniques as mentioned

above, Protsenko and Muller propose the following techniques: 1. Replacing plain

strings/numbers by arithmetic/string operations that produce equivalent values; ex-

amples: Vigenere encryption, replacing 4 + 1 with 6 − 1, array index shift, move

Java method locals to composite types (maps/sets/lists) in the containing Java class.

2. OOD obfuscations: extract method, encapsulate field (using getter/setter), move

fields/methods from one class to another, merge methods.

Although it is noted in literature that few techniques beyond what is provided by

ProGuard are widely applied in real apps [14], and some of the techniques surveyed

above are difficult to apply automatically without violating Android’s stringent ex-

ecutable format verification [105], they nevertheless show what dedicated adversary

could do to evade detection.

6.3 Analysis of a Real Android Malware Sample

This section presents the detailed analysis of a real Android malicious app. Besides

revealing some detection evasion techniques employed by real Android malware, the

analysis motivates the design and implementation of this work, in particular, Compo-



www.manaraa.com

126

nent Callback Call Graph Extraction (C3GE) presented in Section 6.5, by showing the

inadequacy of a recursive call graph construction algorithm (Algorithm 2) adopted

by, for example, the popular [85, 164, 105, 163, 219] Android analysis tool Andro-

guard [63]. Moreover, this malware sample is used in later sections as a running

example for illustrating various elements of this work.

6.3.1 About the Malware Sample

The malware is contained in the Drebin Android malware dataset [16, 185, 3] with

the following identification information:

• SHA-256 checksum: a00f2b489dac150e513526ab285141d41a127133cd3be21150-

46e22e189ff2a3.

• Android package name: Jk7H.PwcD.

• Version code: 1.

• Size: 40,551 bytes.

• VirusTotal [207] result page: http://goo.gl/6PqUYM, with a snapshot obtained

on January 2015 shown in Figure 6.4.

Reasons for using this malware sample for demonstration include: 1. It is struc-

turally simple enough for an in-depth analysis that can be repeated by the reader. 2. It

packs in its compact size some representative detection evasion techniques, includ-

ing class name obfuscation, yet the class fields/methods retain their human-readable

names. 3. It belongs to a multiply duplicated malware family that is captured in the

Drebin dataset.

6.3.2 Obtaining and Decompiling the Sample

Since this malware sample is detected by multiple anti-virus software (Figure 6.4),

there is limited risk in making it available for result reproducibility. Therefore, efforts

http://goo.gl/6PqUYM
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Figure 6.4.: Part of the VirusTotal scanning result of the APK sample a00f2b489-
dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3 obtained on 22 Jan-
uary 2015.

are made to simplify and document the procedure of reproducing the results shown in

this and later sections. The reader is encouraged to follow these procedures to increase

confidence in the results.

In an Internet-connected Linux machine with bash [161], wget [162], and java [53]

(the Java virtual machine command-line starter) installed, execute the following shell

commands to download the malware APK sample to user’s home directory.
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( URL1="https://raw.githubusercontent.com/pw4ever/web-of-apks/gh-pages/01sample/malware/";

URL2="Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3.apk";

wget -nc -nd -O "$HOME/a00f2b.apk" \

"${URL1}/${URL2}"; )

Next, set up utilities that will be used later, which include WoA’s command-line

interface woa and a script for decompiling APK binaries using the Soot [200, 121]

Java optimization framework.

(

TARGET="$HOME/bin/";

mkdir -p ${TARGET};

wget -nc -nd -P ${TARGET} \

https://raw.githubusercontent.com/pw4ever/web-of-apks/gh-pages/bin/soot-apk

wget -nc -nd -P ${TARGET} \

https://raw.githubusercontent.com/pw4ever/web-of-apks/gh-pages/bin/woa

chmod +x ${TARGET}/{soot-apk,woa}

)

Lastly, decompile the DEX in the APK sample into Soot’s Jimple [200] intermedi-

ate representation (IR) format, which is a typed 3-address IR format as shown shortly

in, for example, Figure 6.5.

"$HOME/bin/soot-apk" a00f2b.apk

After this, a directory named a00f2b will be created in the user’s home directory

that contains the files mentioned below.

6.3.3 Analysis of an Invocation Path to Malicious Functionality

Anti-virus software scanning results (e.g., DrWeb’s label of this app sample contains

the word SmsSend, as shown in Figure 6.4) suggest that the maliciousness of this app

sample lies in unauthorized SMS message sending. In this section, an invocation path

to the malicious SMS sending function is revealed to illustrate the detection evaision

techniques employed by this real malware sample and, in Section 6.3.4, motivates

the needs for APK analysis tools that are robust against these detection evasion
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techniques. Also in Section 6.3.4, other invocation paths besides the one presented

here will be revealed by a simple query in the proposed system.

6.3.3.1 Step 1: Jk7H.PwcD.SLYfoMdG.onCreate

Figure 6.5 shows the first non-initializer Java method that is executed upon entry

into the app: the method Jk7H.PwcD.SLYfoMdG.onCreate, which is the creation-

event callback of the Activity class Jk7H.PwcD.SLYfoMdG. Points of interest include:

1. There is a 3-fold iteration between label 6 and label 7, with the conditional check

on line 1,382. These iterations add 3 empty strings to class fields titles and texts.

2. Two methods, load and showScreen, of class Jk7H.PwcD.SLYfoMdG are implicitly

invoked through Java reflections. 3. Method finish of class Jk7H.PwcD.SLYfoMdG is

explicitly invoked if the boolean class field secondStart is false. We now follow the

invocation path to showScreen next.

6.3.3.2 Step 2: Jk7H.PwcD.SLYfoMdG.showScreen

showScreen, the logic of which is shown in Figure 6.6, is invoked from onCreate

implicitly through Java reflection. Points of interest include: 1. Field state of class

Jk7H.PwcD.SLYfoMdG is accessed through Java reflection, and is compared against

the number 0 in the branching conditional on line 1,876. 2. If state equals to 0 (line

1,874 and 1,876), method setMain of class Jk7H.PwcD.SLYfoMdG is invoked implicitly

through Java reflection. 3. Otherwise, if state equals to 1 (line 1,890 and 1,892),

method setLicense of class Jk7H.PwcD.SLYfoMdG is invoked implicitly through Java

reflection. 4. Otherwise, if state equals to 2 (line 1,915 and 1,917), method setEnd

of class Jk7H.PwcD.SLYfoMdG is invoked implicitly through Java reflection. It should

be noted the extensive use of Java reflection for class field and method access here.

We now follow the invocation path to setMain next.
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Figure 6.5.: The app component callback method Jk7H.PwcD.SLYfoMdG.onCreate,
which is the first entry into the malware sample Jk7H.PwcD. File: Jk7H.PwcD.-

SLYfoMdG.jimple.
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Figure 6.6.: The method Jk7H.PwcD.SLYfoMdG.showScreen, implicitly invoked by
the method Jk7H.PwcD.SLYfoMdG.onCreate through Java reflection. File: Jk7H.-

PwcD.SLYfoMdG.jimple.
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Figure 6.7.: The method Jk7H.PwcD.SLYfoMdG.setMain, implicitly invoked by the
method Jk7H.PwcD.SLYfoMdG.showScreen through Java reflection. File: Jk7H.-

PwcD.SLYfoMdG.jimple.

6.3.3.3 Step 3: Jk7H.PwcD.SLYfoMdG.setMain

setMain, the logic of which is shown in Figure 6.7, is invoked from showScreen

implicitly through Java reflection. setMain uses the Android API setContentView

of class android.app.Activity (inherited by the app class Jk7H.PwcD.SLYfoMdG)

to set up an interactive user interface (UI) on the device’s current screen, i.e., the

current Activity in Android’s parlance.

Analysis of the resource files contained in the APK reveals that the UI set up on

line 1,773 contains two Button widgets (two “Views” in Android’s parlance) that can

be clicked by the user. Two methods, mainButtonClick1 and mainButtonClick2,

are invoked in response to user’s button clicking action. Therefore, although the

widget callback method mainButtonClick1 is not directly invoked by setMain, there
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Figure 6.8.: The method Jk7H.PwcD.SLYfoMdG.mainButtonClick1, implicitly in-
voked by the method Jk7H.PwcD.SLYfoMdG.setMain through view callback. File:
Jk7H.PwcD.SLYfoMdG.jimple.

is a logically implicit invocation path from the latter to the former. We now follow

this logic invocation path to mainButtonClick1 next.

6.3.3.4 Step 4: Jk7H.PwcD.SLYfoMdG.mainButtonClick1

mainButtonClick1, the logic of which is shown in Figure 6.8, is invoked from

setMain implicitly through button widget callback. mainButtonClick1 invokes two

methods, send and setEnd, implicitly through Java reflection. Note that there are

two methods named send in class Jk7H.PwcD.SLYfoMdG, overloaded by their differ-

ent arities (i.e., the number of method arguments). It is the 0-arity send that is

invoked here. The 2-arity send is invoked later in the invocation path we analyze

here (Section 6.3.3.7). We now follow the invocation path to the 0-arity send next.
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Figure 6.9.: The method Jk7H.PwcD.SLYfoMdG.send (0-arity version), implicitly in-
voked by the method Jk7H.PwcD.SLYfoMdG.mainButtonClick1 through Java reflec-
tion. File: Jk7H.PwcD.SLYfoMdG.jimple.

6.3.3.5 Step 5: (Zero-arity) Jk7H.PwcD.SLYfoMdG.send

The 0-arity method send of class Jk7H.PwcD.SLYfoMdG, the logic of which is shown

in Figure 6.9, is invoked from mainButtonClick1 implicitly through Java reflection.

Although this method is a single basic block without any conditional logic, it uses

a new implicit control flow that has not been discussed so far: asynchronous Java

thread.

Specifically, class Jk7H.PwcD.SLYfoMdG$1, which implements the java.lang.-

Runnable interface, is fed as the initialization argument to an instance of the java.-

lang.Thread class on line 1, 544. Then, the Thread instance is started on line 1,546.

After this, although no internal methods (i.e., methods implemented in the APK)

is directly invoked by the 0-arity send, method run of class Jk7H.PwcD.SLYfoMdG$1

will be executed as a result of the asynchronous thread mechanism of the Dalvik
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virtual machine, which mirrors the identical mechanism on the Java platform. We

now follow this logical invocation path to Jk7H.PwcD.SLYfoMdG$1.run next.

6.3.3.6 Step 6: Jk7H.PwcD.SLYfoMdG$1.run

Method run of class Jk7H.PwcD.SLYfoMdG$1, (a segment of) the logic of which is

shown in 6.10, is invoked when the java.lang.Thread instance started in the 0-arity

method send of class Jk7H.PwcD.SLYfoMdG is scheduled for execution by the hosting

virtual machine. The logic of interest here is that, if the java.util.ArrayList

pointed to by the field numbers of class Jk7H.PwcD.SLYfoMdG is non-empty (lines

43–50; the implication of this conditional on our design will be examined later in

Section 6.5), the 2-arity method send of class Jk7H.PwcD.SLYfoMdG is implicitly

invoked through Java reflection. We now follow the invocation path to the 2-arity

send next.

6.3.3.7 Step 7: (Two-arity) Jk7H.PwcD.SLYfoMdG.send

The 2-arity method send of class Jk7H.PwcD.SLYfoMdG, the logic of which is shown

in 6.11, culminates the trace of following the invocation path by implicitly invoking

Android API method that sends SMS text messages, i.e., method sendTextMessage

of class android.telephony.SmsManager.

It is noted that the title (line 162) and content (line 166) of the text message are

determined by the method arguments fed into send. Refer back to Figure 6.10, the

two arguments are determined by the first elements of the Array Lists referred-to by

the fields numbers and messages of class Jk7H.PwcD.SLYfoMdG, respectively.
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Figure 6.10.: The method Jk7H.PwcD.SLYfoMdG$1.run, implicitly invoked by the
method Jk7H.PwcD.SLYfoMdG.send (0-arity version) through Java thread. File:
Jk7H.PwcD.SLYfoMdG$1.jimple.

6.3.3.8 Summary

We have just traced the following 7-hop invocation path from the entry call-

back method onCreate to the malicious invocation of sendTextMessage above (omit

the class names): onCreate ⇒ showScreen ⇒ setMain ⇒ mainButtonClick1 ⇒

(0-arity) send ⇒ run ⇒ (2-arity) send ⇒ sendTextMessage. A remarkable fact

about this invocation path is that none of the hops is triggered by the usual direct in-
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Figure 6.11.: The method Jk7H.PwcD.SLYfoMdG.send (2-arity version), implicitly
invoked by the method Jk7H.PwcD.SLYfoMdG$1.run through Java reflection. SMS
text messages are sent through reflection call to sendTextMessage Android API. File:
Jk7H.PwcD.SLYfoMdG.jimple.

vocation mechanism (i.e., the *-invoke virtual machine instructions), but by implicit

control flow mechanisms such as Java reflection, thread, or Android event callbacks.

For a 40KBytes app, the invocation path to sendTextMessage taken by Jk7H.PwcD

is untypically complicated and surreptitious. For example, those Java reflection in-

vokes can be replaced by direct invoke virtual machine instructions (*-invoke) with-

out changing user observable behaviors of the app for both simplicity and performance

(Java reflection incurs non-trivial overhead in comparison to direct invokes [147]).
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However, Jk7H.PwcD demonstrates, within its compact size, what a dedicated ad-

versary might do to evade detection. This example motivates the explicit considera-

tion of adversary scenario for Android APK analysis.

6.3.4 The Need for More Robust Call Graph Extraction Algorithm

6.3.4.1 Call Graph Extraction in Androguard

Andorguard [62, 63] is a publicly released and maintained suite of APK analysis tools

implemented in the Python programming language. Androguard is used in multiple

previous works [85, 164, 105, 163]. We apply the androgexf tool from Androguard’s

latest 1.9 release7 and obtain the call graph shown in Figure 6.12.

More precisely, Figure 6.12 shows the connected subgraph of Jk7H.PwcD’s call

graph.Note that androgexf only shows internal method invocations, i.e., invocations

to methods that are contained in the APK; external invocations to Android API are

not included in the extracted call graph. Figure 6.12 shows that only two internal

method invocations are detected: finish and getSharedPreferences. The other

nodes shown in Figure 6.12 are internal methods that directly invoke either of these

methods, but are not otherwise invoked from onCreate. In other words, androgexf

only shows that these methods are co-invocators with onCreate to either finish and

getSharedPreferences, but do not have an invocator-invocatee relationship between

them.

Given the lengthy analysis in Section 6.3.3, the explanation for the result shown

in Figure 6.12 is that androgexf is not designed to handle implicit control flows such

as Java reflection and thread. Moreover, the results indicate that androgexf’s call

graph extraction logic is (Algorithm 2):

7To be precise, we use the python2-androguard-hg package maintained in Arch Linux’s AUR
repository that is last updated on 5 June 2014, available at http://goo.gl/GcmoXC.

http://goo.gl/GcmoXC
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Figure 6.12.: The subgraph of the call graph generated by Androguard that is rooted
at the entry callback method onCreate. Note that only two internal methods, finish
and getSharedPreferences, that are directly invoked as shown in Figure 6.5 are
detected. The other methods shown here also invoke (one of) these two methods, but
are not invoked from onCreate.

Scan the current method body, identify *-invoke virtual machine instruc-

tions, resolve the target method, recursively follow the target method if

it is an internal method that is implemented in the current APK.

Although this is a simple and elegant (in the recursive formulation) call graph extrac-

tion algorithm, given the existence of app such as the one analyzed in Section 6.3.3,

there is a clear need for more robust call graph extraction algorithms. This is a task

undertaken in the present work.

It must be pointed out that Androguard provides much more functionality than

call graph extraction; in particular, it provides a Python programming interface to

access and manipulate internal structures of an APK, which is used in other works

for various extensions. Moreover, Androguard is publicly available, can be easily set

up, and is well maintained—all the traits make Androguard immensely valuable for
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Algorithm 2 Androguard’s call graph extraction algorithm.

Input: Bm: the sequence of VM instructions that comprises method m’s body
Output: invocation paths from method m
1: function Extract-Internal-Invokes(Bm)
2: I ← ∅ I I holds invocation paths from m
3: for i ∈ Bm do I loop over the body of m
4: if i is of type *-invoke then
5: m′ ← target method of i
6: if m′ is an internal method then
7: Bm′ ← method body of m′

8: I ← I ∪ {m,Extract-Internal-Invokes(Bm′)}
9: else Im′ is an external method
10: I ← I ∪ {[m,m′]}
11: end if
12: end if
13: end for
14: return I
15: end function

research, as evidenced by numerous works that is based on Androguard. The purpose

of this section is not to belittle Androguard8, but to point out the limitations of what

it provides, and to motivate the work presented in next sections.

6.3.4.2 What this Work Provides

In contrast, as shown in Figure 6.13, the following query on the prototype WoA:

MATCH

(a:Apk {sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

<-[:INVOKED_BY]- (m:Method)

WHERE m.name=~".*android\\.telephony.*"

WITH a, m

MATCH (a)-->(d:Dex)-->(c:Class)-->(cb:Callback)

RETURN *

8Androguard sets a good example of publishing and maintaining their implementation that is often
(unfortunately) not followed. Androguard is a source of inspiration for making the present work
reproducible for the benefits of the whole research community.
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Figure 6.13.: With the first query shown in Section 6.3.4.2, WoA reveals that 3 meth-
ods, getDefault, getNetworkOperator, and sendTextMessage, from Java packages
android.telephony.* are implicitly invoked from the entry method onCreate of
class Jk7H.PwcD.SLYfoMdG.

Figure 6.14.: With the second query shown in Section 6.3.4.2, WoA reveals a dif-
ferent invocation path to sendTextMessage from the one analyzed in Section 6.3.3:
onCreate⇒ showScreen⇒ setLicense⇒ licenseButtonClick1⇒ (0-arity) send
⇒ run ⇒ (2-arity) send ⇒ sendTextMessage.

shows that 3 methods, getDefault, getNetworkOperator, and sendTextMessage,

from Java packages android.telephony.* are implicitly invoked from the method

onCreate of class Jk7H.PwcD.SLYfoMdG. In our current implementation using the

Neo4j graph database [144], the query that generates Figure 6.12 takes 0.1 seconds

to complete in a freshly booted instance (so that cache is not used to bias the result).

As shown in Figure 6.14, the following query on the prototype WoA:
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MATCH

(a:Apk {sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

-[:CALLGRAPH]-> (cg:CallGraphNode)

MATCH p=(cg)-[:INVOKE*..8]->(m)

WHERE m.name=~".*android\\.telephony.*"

RETURN *

reveals a different invocation path to sendTextMessage from the one analyzed in

Section 6.3.3: onCreate ⇒ showScreen ⇒ setLicense ⇒ licenseButtonClick1

⇒ (0-arity) send ⇒ run ⇒ (2-arity) send ⇒ sendTextMessage. The two paths

diverge at showScreen and re-converges at 0-arity send. The query that generates

Figure 6.14 takes 1.647 seconds to complete in a freshly booted instance.

6.4 Web of Fibers

6.4.1 Introduction

6.4.1.1 Relation to Existing Literature

Figure 6.15 shows a (non-comprehensive) categorization of the techniques pro-

posed in existing literature surveyed in Section 6.2. Within this framework, the task

of measuring similarity of APKs for plagiarism/malware detection consists of two

sub-tasks: 1. encoding individual APK samples and 2. identifying plagiarism/mal-

ware by computing similarity on the encoded APK samples. For example, Desnos

encodes each Java method of an APK into a string, and uses the Normalized Com-

pression Distance (NCD) of the strings to measure similarity of the corresponding

methods [62].
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APK Similarity Measurement

APK pool
APK APK APK APK
APK APK APK APK

Graph Based

Function Call Graph/FCG

View Graph
Component Dependency Graph/CDG
Component Behavioral Graph/CBG

Fiber

Inter-procedural

Control Flow Graph/CFG
Data Dependency Graph/DDG

Program Dependency Graph/PDG
3D-CFG

Intra-procedural

Encoding Computing
Token Based

bytecode k-gram

Context Triggered Piece-wise Hashing
/CTPH

bytecode sequence

Normalized Compression Distance
/NCD

Edit Distance
Locality Sensitive Hashing/LSH

Jaccard Distance

Set/Sequence based

Subgraph Isomorphism Based

VF2 algorithm

Graph Analysis Based
Web of Fibers/WoF

Learning/Mining Based

Agglomerative Hierarchical
Clustering/AHC

Vantage Point Tree/VPT
Neighborhood Hash Graph Kernel

/NHGK
Association Rule Mining/ARM
Support Vector Machine/SVM

Figure 6.15.: A (non-comprehensive) categorization of techniques, as proposed in
related work reviewed in Section 6.2, for measuring similarity between samples from
a pool of APKs. Wihtin this framework, Web of APKs (WoA) encodes individual
APK samples into the inter-procedural graph-based representation Fibers, which are
then combined into a single Web of Fibers (WoF) by syntactic matching of attributes.
APK analysis problems, including similarity measurement, are formulated as graph
analysis queries on WoF.

The spectrum of APK encodings can be clustered into the following categories

based on their granularity and scope.

Token-based encodings encode short Dalvik bytecode sequences or all bytecodes

contained in individual Java methods of an APK into non-graph-structured tokens.

They are fine in granularity (i.e., at individual byte code level) and local in scope

(i.e., bytecode segments within individual methods). Examples of such encodings

include stringified bytecode sequences [62], bytecode k-grams [97], and context trig-

gered piece-wise hashing (CTPH) [233].

Intra-procedural-graph-based encodings encode control and data flow information

within individual Java methods of an APK into graphs. Comparing with token-based

encodings, they are coarser in granularity (i.e., bytecodes are abstracted away) but
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less local in scope (i.e., individual methods). Examples of such encodings include data

dependency graphs (DDG) [56], program dependence graphs (PDGs) [55], variants of

control flow graphs (CFGs), e.g., 3D-CFG [44]

Inter-procedural graph-based encodings encode global structural information of an

APK between individual Java methods or, at even coarser granularity, Android com-

ponents. Examples of such encodings include view graphs [225], component depen-

dency graphs (CDG) and component behavioral graphs (CBG) [219], function call

graph (FCG) [85], and, as will be discussed shortly, Fibers.

Techniques of computing similarity of APKs using the above encodings include

the following categories.

Set/sequence-based techniques use distance metrics for set or sequence for sim-

ilarity measurement. Examples of using these techniques include edit distance of

CTPH [233], locality sensitive hashing (LSH) of semantic blocks [56], normalized

compression distance of stringified bytecode sequences [62], and Jaccard distance of

feature vectors [234].

Subgraph-isomorphism-based techniques measure APK similarity by identifying

isomorphic subgraphs of graph-based APK encodings and using, for example, Jac-

card distance to measure how significant the isomorphic subgraphs are. Examples of

using these techniques include applying isomorphic subgraph identification algorithms

to PDGs [55] and view graphs [225]. Interestingly, both works use the VF2 algo-

rithm [52], perhaps due to the public availability of its implementation [114]. This

makes a case in releasing supporting implementation for result reproducibility and

the benefit of future research—a practice that is followed in this work.

Machine-learning/pattern-mining-based techniques encompass a significant por-

tion of the research body that applies advances in machine learning and pattern

mining research for identifying similar APKs. Since machine learning tasks, such as

classification and clustering, are often frame in a continuous metric space (e.g., Eu-

clidean spaces) rather than a discrete combinatorial space (e.g., sequences and per-

mutations), combinatorial structures extracted from APKs (e.g., bytecode sequences,
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k-grams, feature hashes) are often first transformed into continue features before

proceeding. Example of using these techniques include applying agglomerative hier-

archical clustering (AHC) [61] to k-gram-based feature bit-vectors [97] and to group

APK class packages into different modules [234], using vantage point tree (VPT) [222]

to reduce metric space search complexity [234], using neighborhood hash graph ker-

nel (NHGK) [100] to encode 1-hop neighborhoods on method call graphs, formulating

malware detection as an association rule mining [101] problem from extracted features

to observed malicious behaviors [219], using support vector machines (SVM) [192] to

malicious app detection [85, 16], and using probabilistic generative models [203] on

Android permissions requested by APKs for ranking their perceived risks [149].

Parallel to the aforementioned approaches, Web of APKs, as presented in this

work, adopts a declarative graph analysis approach to the problem of identifying

and explaining semantic similarity of APKs. As briefly discussed in Section 6.1.3,

this approach does not work by pairing individual APK encodings for comparison or

training classifiers on a carefully selected representative data sets, but, instead, by:

• Combining Fibers of individual APK samples into a single Web of Fibers (WoF)

through both syntactic matching of essential attributes and structural similarity.

• Leveraging the efficiency of index-free adjacency [175] access and query capa-

bilities of modern graph database systems to support declarative graph analysis

of the relationship between APK samples.

6.4.1.2 About the Queries

As briefly mentioned in Section 6.1.2, the Neo4j graph database [144] and its com-

panion Cypher graph query language [145] are leveraged in the current implementa-

tion of WoA to manage, query, and visualize WoF. Therefore, concrete queries that

scatter across this chapter for result reproducibility are presented in Cypher [145].
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Fortunately, Cypher is designed to facilitate easy comprehension by using pat-

tern matching and self-explanatory English prose and iconography. The following

examples, accompanied by references to the official documentation [145], suffice for

understanding query instances presented in this section.

• An example of graph node pattern is (a:Apk {sha256:"1234"}), in which a

node of label Apk (a node can have more than one labels) and property sha256

(of value 1234) is bound to the name a that can be referred to later in the

pattern. Note: node patterns are enclosed by pairs of parentheses (), and

properties are enclosed by pairs of braces {}.

• An example of graph edge (“relationship” in Cypher’s terminology) pattern is

(a)-[e:INVOKE]->(b), in which a directed edge from node a to node b of type

INVOKE (an edge can have at most one type) is bound to the name e. Note:

edge patterns are enclosed by pairs of brackets [], with edge directionality rep-

resented by -[]-> (left to right), <-[]- (right to left), or -[]- (either direction).

• An example of graph path (an ordered interleaving sequence of nodes and edges)

pattern is (cgr:CallGraphNode)-[:INVOKE*..5]->(cgn:CallGraphNode), whi-

ch matches an interleaving sequence of label-CallGraphNode nodes and type-

-INVOKE edges with up to (and including) 5 edges on the path.

6.4.2 Fibers: The Property Graph Model of Individual APKs

6.4.2.1 Overview

It has been mentioned in Section 6.1.3 and illustrated in Figure 6.3 that:

A Fiber is a hierarchical property graph model of an individual APK sam-

ple that consists of the following layers of structural nodes : signing key,
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Table 6.1.: List of edge types in Fibers, which include edges that connect both struc-
tural nodes (e.g., SigningKey, Apk, and Dex) and informational nodes (e.g., Tag,
Permission, and IntentFilterAction). Rows marked with * are only available in the
Full Mode. Refer to Table 6.2 for the list of node types/attributes in Fibers.

From Node Type Relationship Type ⇒ To Node Type

SigningKey SIGN Apk
Tag TAG Apk
Apk USE Permission
Apk DEFINE Permission
Apk CONTAIN Dex
Apk CALLGRAPH CallGraphNode
Dex CONTAIN Class
Dex CONTAIN Component/Class

Package CONTAIN Class
Class DESCEND AndroidAPI/Class
Class CONTAIN Method
Class CONTAIN Method/Callback

Method/Callback EXPLICIT INVOKE Method
Method/Callback IMPLICIT INVOKE Method
Method/Callback CALLGRAPH CallGraphNode

Apk CALLBACK SIGNATURE CallbackSignature
Callback CALLBACK SIGNATURE CallbackSignature

CallGraphNode INVOKE CallGraphNode
Method INVOKED BY Apk

* Method/Callback EXPLICIT INVOKE MethodInstance
* Method/Callback IMPLICIT INVOKE MethodInstance
* MethodInstance INSTANCE OF Method
IntentFilterAction TRIGGER Component/Class

IntentFilterCategory TRIGGER Component/Class

APK, DEX (Dalvik EXecutable; the executable format of APK), compo-

nent classes (components), component callback methods (callbacks), tran-

sitive invocatees of the callbacks, call graph nodes, and method invocation

instances (optional). Besides structural nodes, there are also several types

of informational nodes : arbitrary tags (e.g., data source, anti-virus soft-

ware scanning label), requested/defined permissions, and Android Intent

Filter actions/categories.

Property graph, as used in the context of graph database [175] and also here,

is a graph data model in which properties (i.e., key-value pairs) can be attached to

both graph nodes and edges, and patterns or conditionals can be specified using such

properties. Fibers are hierarchical in that the nodes in a Fiber are of different types

(i.e., have different labels) that belong to different logical layers, and edges exist only

between specific types of nodes in different layers.
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Table 6.2.: List of node types/attributes in Fibers, which include both structural
nodes (e.g., SigningKey, Apk, and Dex) and informational nodes (e.g., Tag, Permis-
sion, and IntentFilterAction). Rows marked with * are only available in Full Mode.
Refer to Table 6.1 for the list of edge types in Fibers.

Node Type Attributes

SigningKey sha256
Apk sha256, package, versionCode, versionName
Dex sha256

Permission name
Package name
Class name

Method name
* MethodInstance name, args

Callback name
CallbackSignature name, apk, signature
CallGraphNode name, apk, signature

IntentFilterAction name
IntentFilterCategory name

More concretely, Tables 6.1 and 6.2 enumerate the edge types and node types/at-

tributes, respectively. For example, the first row in Table 6.1 reads “edge from node

of type SigningKey to node of type Apk is of type SIGN;” the first row in Table 6.2

reads “node of type SigningKey has a sole attribute named sha256.” Next, in Sec-

tion 6.4.2.2, concrete examples of these node/edge types/attributes are presented us-

ing the real Android malware example analyzed in Section 6.3. Thoughts behind the

model design are presented in Section 6.4.3.

One note on Tables 6.1 and 6.2 is that there are two modes of operation in WoF:

the Compact Mode and the Full Mode, with the Compact Mode being the default

mode of operation. The difference between the two is that the Full Mode has an

additional type of node MethodInstance, which records not only invoked method’s

name (as in the type-Method node) but also the actual arguments used in invocation

instances. The thoughts behind the design of having both modes and choosing the

Compact Mode as the default is presented in Section 6.4.3.
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Figure 6.16.: The explicit-invocation part of Fiber skeleton of Jk7H.PwcD (Sec-
tion 6.3).

6.4.2.2 Anatomy of the Model

This section complements the previous one by taking apart the Fiber constructed

from the real Android malware sample analyzed in Section 6.3.

Figure 6.16 visualizes the result of the following query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

OPTIONAL MATCH (signingKey:SigningKey) -[:SIGN]-> (apk) -[:CONTAIN]-> (dex:Dex)

-[:CONTAIN]-> (class:Class) -[:CONTAIN]-> (callback:Callback)

OPTIONAL MATCH (explicitInvoke) <-[:EXPLICIT_INVOKE]- (callback)

RETURN *

which extracts the explicitly-invoked part of the example app’s Fiber skeleton in

the Compact Mode: SigningKey, Apk, Dex, Component, Callback, and (explic-

itly invoked) Method. Both internal method invocations in the call graph pro-

duced by Androguard (Figure 6.12), finish and getSharedPreferences of class

Jk7H.PwcD.SLYfoMdG, are included in this Fiber. In addition, external method invo-

cations, such as to Android API method edit (of class android.content.Shared-

Preferences) or Java API method getMethod (of class java.lang.Class), are also

included in the Method layer of the Fiber. These external API invocations reveal the

externally observed behavior of the app that is not captured in an internal-method-

only call graph.
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Figure 6.17.: Upper layers of Jk7H.PwcD’s Fiber: SigningKey, Apk, Dex, and Com-
ponent.

Figure 6.18.: 100 of the APK samples, signed by the author of Jk7H.PwcD (Sec-
tion 6.3), that have more than 40 anti-virus vendors flagging them as malware.

SigningKey. Figure 6.18 visualizes the result generated by the following query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

OPTIONAL MATCH (signingKey:SigningKey) -[:SIGN]-> (apk)

WITH signingKey MATCH (signingKey) -[:SIGN]-> (n:Apk) <-- (m:Malware)

WITH signingKey, n, count(m) as cm WHERE cm>40

RETURN signingKey, n LIMIT 100
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which shows 100 of the APK samples, signed by the author of Jk7H.PwcD, that have

more than 40 anti-virus vendors flagging them as malware. The result indicates that

the signing key (begins with 24:2C:B4) belong to a prolific malware author.

Apk. Figure 6.19 visualizes the result generated by the following query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

MATCH (p:Permission) -- (apk) -- (n:Tag)

RETURN *

which shows anti-virus vendor labels (obtained from the VirusTotal [207] service) and

permission used/defined by Jk7H.PwcD. Note that Jk7H.PwcD requests 4 Android

permissions:

• android.permission.SEND SMS,

• android.permission.READ PHONE STATE,

• android.permission.INTERNET,

• and android.permission.ACCESS NETWORK STATE,

of which the use of android.permission.SEND SMS for the malicious function is

analyzed in detail in Section 6.3.3.

Dex and Component. Figure 6.20 visualizes the result generated by the following

query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

MATCH (apk) -- (dex:Dex)

WITH dex

MATCH (dex) -- (n)

RETURN *

which shows all nodes in the prototypeWoF that connect to the Dex node of Jk7H.PwcD

(SHA-256 checksum begins with a00f2b), which include a single Component node

Jk7H.PwcD.SLYfoMdG of type Activity. It can be observed that this particular Dex is

multiply repackaged in a number of APKs, all of which share the same package name
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Figure 6.19.: Anti-virus vendor labels (obtained from the VirusTotal [207] service)
and permission used/defined by Jk7H.PwcD

Jk7H.PwcD. The differences in these APKs can be accounted for by, for example, re-

signing using a different key, changing of meta information (e.g., requested permis-

sion), adding/removing contained resources, or even simply rebuilding or realigning

the APK binary [231].

Figure 6.21 visualizes the result generated by the following query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

MATCH (apk) --> (:Dex) --> (component:Component)

WITH component

MATCH (component) --> (callback:Callback) -[:EXPLICIT_INVOKE]-> (method:Method)

RETURN *

which shows the lower layers of Fiber nodes in Jk7H.PwcD: component callback meth-

ods and (explicitly invoked) transitively invoked methods.

The type-Method nodes invoked by the type-Callback node onCreate of class

Jk7H.PwcD.SLYfoMdG are transitive invocatees that include both directly and indi-

rectly invoked methods: If methods m1 invoke m2 and m2 invokes m3, the transitive

invocatees ofm1 include bothm2 andm3. The reason that the explicitly invoked tran-

sitive invocatees shown in Figure 6.21 (i.e., the finish and getSharedPreferences

nodes) coincide with that of the call graph extracted by Androguard (Figure 6.12)
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Figure 6.20.: All nodes in the prototype WoF that connect to the Dex
node of Jk7H.PwcD (Section 6.3), which include a single Component node
Jk7H.PwcD.SLYfoMdG of type Activity.

Figure 6.21.: The lower layers of Fiber nodes in Jk7H.PwcD: component callback
methods and (explicitly invoked) transitively invoked methods.

is that, as analyzed in Section 6.3.3, Jk7H.PwcD extensively employs implicit control

flow invocations, which is the subject of the next section.

Figure 6.22 visualizes the result generated by the following query:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

OPTIONAL MATCH (signingKey:SigningKey) -[:SIGN]-> (apk) -[:CONTAIN]-> (dex:Dex)

-[:CONTAIN]-> (class:Class) -[:CONTAIN]-> (callback:Callback)
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Figure 6.22.: The Fiber skeleton of Jk7H.PwcD with implicitly invoked transitive
invocatees included.

OPTIONAL MATCH (explicitInvoke) <-[:EXPLICIT_INVOKE]- (callback)

-[:IMPLICIT_INVOKE]-> (implicitInvoke)

RETURN *

which shows the Fiber skeleton of Jk7H.PwcD with implicitly invoked transitive invo-

catees included. Contrast Figure 6.22 with the earlier Figures 6.16 and 6.21, it can be

seen that far more methods are implicitly invoked in Jk7H.PwcD than are explicitly

invoked, which is not surprising given the analysis of Jk7H.PwcD in Section 6.3.3. Al-

though many of these methods are indirectly invoked, they are all directly connected

to the Callback method onCreate in Jk7H.PwcD’s Fiber per the edge model of Fibers

(Table 6.1).

The thoughts behind the design choice of compressing invocation chains into the

flat transitive invocatee set is discussed shortly in Section 6.4.3. Essentially, this

allows: 1. efficient query of all externally observable behaviors from a callback as

defined by the API method invocations and 2. tolerating non-essential changes in

APK internal structures due to, for example, obfuscation.

Transitive invocatees, as shown in Figure 6.22, are insensitive to invocation paths

of APKs. While this provides some degree of robustness against invocation-path

obfuscation, it fails to meet the demand when there is a need for investigating such

invocation paths as in, for example, the query that produce Figure 6.14.
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Therefore, to make up for transitive invocatees’ invocation-path insensitivity, the

Fiber model also include nodes/edges that represent the invocation paths: the type-

CallGraphNode nodes and type-INVOKE edges between such nodes. The connected

subgraph of such nodes/edges, starting from a given component callback method m,

is called m’s component callback call graph (C3G).

Figure 6.23 visualizes the result generated by the following query:

MATCH

(a:Apk {sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

-[:CALLGRAPH]->(cg:CallGraphNode)

MATCH (cg)-[:INVOKE*..4]->(m:CallGraphNode)

RETURN *

which shows the C3G from the component callback method onCreate within 4-hop

from the root node that represents onCreate (the number of hops is chosen for visual

clarity, rather than due to any limitation on the query). Comparing with the call

graph (Figure 6.12) extracted by Algorithm 2, the need for more robust call graph

extraction algorithms—which is fully examined in Section 6.5—is plain to see. For

this chapter, it suffices to know that C3G is an integrated part of WoF.

6.4.3 A Review of WoF’s Design

This section explains the thoughts behind the design of WoF in a series of questions

and answers.

6.4.3.1 How the element types/attributes are selected in WoF?

The selection of node types/attributes in WoF is the result of balancing two

principles that can be summarized as “less is more” and “simple but not simpler.”

Less is more. As previously discussed in Section 6.4.2.1, unlike existing works that

encode individual APKs separately, the encoded APKs in WoF (i.e., Fibers) are
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merged into a single WoF. Therefore, the number of elements incorporated into Fiber

will directly impact the scale of WoF, in which a smaller Fiber translates to more

efficient access and query for WoF. Moreover, if non-essential elements (i.e., elements

of APKs that does not characterize the APK, are shared by many APKs, or can

be easily changed/obfuscated) are included and overwhelm the essential elements,

similarity between APKs can be obscured like needles in haystack. For both reasons,

it is preferable to reduce of the number/variety of elements that are included in the

model.

Simple but not simpler. To be useful, WoF should be able to not only detect similar

APKs, but also differentiate dissimilar APKs. For this, despite “less is more,” WoF

should include enough elements to capture the various ways that APKs can differ

from each other. For example, if only package is recorded for type-Apk nodes in

Table 6.2, two different Apks with the same package name could not be distinguished.

Contrarily, if only sha256 is recorded, we would not see that the Dex shown in

Figure 6.20 is included by multiple APK with the same package name Jk7H.PwcD.

Considering these two principles, the types/attributes of nodes/edges of WoF

(Tables 6.1 and 6.2) are selected to capture essential syntactic similarities between

APKs without unnecessarily inflating the model.

6.4.3.2 Why have both transitive invocatees and call graphs in Fiber?

Indeed, each transitive invocatee has at least one corresponding call graph node

(there can be more than one on different invocation paths). The same information

about an invocated method will redundantly appear in both the transitive invocatee

and call graph parts of a Fiber.

However, they serve different purposes. In Section 6.4.4, we will discuss two dif-

ferent kinds of similarity that is captured in Fiber: syntactic similarity and structural

similarity. Essentially, at the method invocation level of the Fiber model, transitive
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invocatee provides syntactic similarity while call graph provides structural similarity.

Methods extracted from different APKs that have the same identifier (i.e., “package

name” and “method name”) map to the same transitive invocatee node, whereas such

methods map to different call graph nodes—This is why a CallGraphNode node has

an apk attribute that uniquely associate it with an Apk node (Table 6.2).

The intention of having both transitive invocatee and call graph parts in the same

Fiber is to support efficient queries of different types. Figures 6.13 and 6.14 are two

concrete examples: Transitive invocatee supports efficient set queries (“does Jk7H.-

PwcD invoke sendTextMessage, and from which method callback?”), whereas call

graph supports efficient path queries (“what are the invocation paths from onCreate

to sendTextMessage?”). Moreover, unlike an approach that implements transitive

invocatees in a (for example) hash set data structure, the explicit-graph-connection

approach adopted by WoF can efficiently find all APKs that use certain methods

without doing individual set membership test—this is one example of the efficiency

provided by WoF’s index-free-graph-traversal queries.

6.4.3.3 Why WoF does not include bytecode-level feature, e.g., bytecode k-gram?

The reasons are three-fold.

Firstly, a single method can contain hundreds of bytecodes. Moreover, as the

obfuscation techniques surveyed in Section 6.2.4 suggest, bytecodes can be easily

added/removed/replaced without disturbing overall app semantics. Therefore, the

“less is more” principle (discussed above) suggests the exclusion of bytecode features

in WoF.

Secondly, although WoF does not directly encode bytecodes, WoF implicitly in-

cludes bytecode-level features by encoding the invoke-type bytecode in the transitive

invocatees and the C3G—the construction of C3G, as will be discussed in Section 6.5,
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Figure 6.24.: Snippets of method invocation information extracted from Jk7H.PwcD

during the construction of its Fiber.

involve bytecode analysis that are much more semantic-preserving than, for example,

k-gram.

Lastly, WoF is designed to complement, rather than, replace bytecode-level APK

similarity detection techniques such as k-gram. Moreover, if such needs arise, WoF

can be easily extended to encode bytecode by adding additional node/edge types for

the purpose, without having to change other parts of the design such as the queries.

6.4.3.4 Why the Full Mode is optional and not the default?

While the Full Mode capturing more information (i.e., actual method invocation

arguments, as shown in Figure 6.24) than the Compact Mode with no sacrifice in

query capabilities, our experience in building prototype WoA from real APK samples

suggests that Full Mode is best reserved for deep analysis on a small pool of APKs.

For example, an early WoA built from the 1,200+ APK samples in the AGMP dataset

contains 70,848 type-Method nodes and 609,128 type-MethodInstance nodes. The
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ratio of 10-to-1 between type-MethodInstance and type-Mehotd, or even worse for

some APK analysis modes in Section 6.5, makes the use of Full Mode unwieldy for

analysis on a large pool of APKs. Therefore, the Compact Mode is the default mode

of operation and will be the only mode examined henceforth.

In the current implementation, method invocation arguments are extracted and

stored for query as a byproduct of the C3GE process (Section 6.5). Therefore, a

user only needs to decide whether to incorporate such information into WoF for

visualization, rather than whether having access to such information.

6.4.4 Syntactic and Structural Similarity

This section discusses two kinds of APK sample similarity that are captured in

WoF: syntactic and structural similarity. Section 6.6 presents an extensive evaluation

of WoA’s APK analysis support capability with both kinds of similarity using a

million-node-scale graph built from real malware samples.

6.4.4.1 Syntactic Similarity

Syntactic similarity between APK samples is captured in WoF by the matching

of their Fiber elements’ attributes. Combining with the “less is more” principle

(Section 6.4.3.1), syntactic similarity explains the selection of attributes in Fiber

(Table 6.2): They are used to identify nodes from different APKs by their syntactic

similarity. For example, SigningKey, Apk, and Dex are uniquely identified by their

SHA-256 checksum: two APKs samples that have the SigningKey with the same

sha256 attribute value share the same SigningKey node in the WoF. Therefore, APKs

signed by the same author can be identified in WoF by their common connection

to the same SigningKey node; similarly, repackaged APKs can be identified by their

common connection to the same Dex node.
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The previous examples in Section 6.4.2 that illustrate different parts of WoF are

some examples of using syntactic similarity in APK analysis: 1. The query that gen-

erates Figure 6.18 returns malicious APKs that share the same authorship. 2. The

query that generates Figure 6.20 returns repackaged APKs that share the same exe-

cutable code.

These simple queries can be extended to answer other questions that may be of

interest to the analyst. For example, a trivial extension to the query of Figure 6.18

is:

MATCH (apk:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

MATCH (signingKey:SigningKey) -[:SIGN]-> (apk)

WITH signingKey MATCH (signingKey) -[:SIGN]-> (n:Apk) <-- (m:Malware)

WITH n, count(m) as cm WHERE cm>40

WITH collect(DISTINCT n.package) as coln

UNWIND coln as pkgname

MATCH (a:Apk) WHERE a.package=pkgname

WITH pkgname, count(a) as ca

RETURN pkgname, ca ORDER BY ca DESC

which counts the different package names of the multiply flagged (by over 40 AV

vendors) malware signed by Jk7H.PwcD’s author:

Jk7H.PwcD,116

ad.notify1,94

tp5x.WGt12,18

vnpysgo.wbwkavy,3

Further evaluation is presented in Section 6.6.

6.4.4.2 Structural Similarity

While syntactic similarity supports discovery of related APKs by matching their

attributes at different levels, it can be obscured by active obfuscation in adversary sce-

narios such as plagiarism/malware detection. Take our running example (Section 6.3)

for instance, given that the method names (e.g., send) are plain English words, it is
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almost certain that: 1. Jk7H.PwcD is an obfuscated package name for the app and

2. Jk7H.PwcD.SLYfoMdG is the obfuscated class name for the main class. A dedicated

adversary may go further to consistently change all internal method names (albeit

external API methods cannot be obfuscated by renaming alone).

To extend utility of WoA’s declarative graph analysis to such cases, WoF comple-

ments syntactic similarity by structural similarity. As shown in Table 6.2, a node type

CallbackSignature with attributes name, apk, and signature is introduced into the

Fiber model, in which a structural signature (the content of signature) is associated

with each component callback method (identified by name, e.g., Jk7H.PwcD.SLYfoMdG-

.onCreate) of a given APK binary (identified by the checksum of the APK in apk).

The intention is that signature can be used in query to identify component callbacks

that behave similarly but have different names (perhaps due to obfuscation).

Given such intention, existing APK method encoding techniques (surveyed in

Section 6.2), such as the string encoding proposed by Desnos [62], CTPH-based or

bytecode-k-gram-based feature hashes [97], LSH-based semantic vectors [56], and

NHGK-based encoding [85], can conceivably be used for CallbackSignature’s sig-

nature. In WoF, we devise an inter-procedural-control-flow-based signature, Compo-

nent Callback Call Graph Degree Frequency Distribution (C3GDFD), and use it for

the signature attribute of CallbackSignature nodes based on the following con-

siderations.

• Existing research on APK obfuscation (Section 6.2.4) shows that inter-procedural

control flow is more difficult to be obfuscated than both bytecode sequences and

intra-procedural control flow.

• Token-based or intra-procedural-control-flow-based encoding techniques (Fig-

ure 6.15) only characterize a single method, e.g., the entry callback onCreate.

• By leveraging WoA’s robust C3GE (Section 6.5), C3GDFD-based signature

characterizes the whole call graph rooted at the callback.
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Given the directed call graph Gm (an example is shown in Figure 6.23) of a com-

ponent callback method m extracted by C3GE (Section 6.5), Component Callback

Call Graph Degree Frequency Distribution (C3GDFD) based signature of m is a tu-

ple of the following 5 numbers computed from Gm:

• the node count of Gm,

• the mean of Gm’s degree frequency distribution (DFD, defined next),

• the standard deviation of Gm’s DFD,

• the skewness [134] of Gm’s DFD, and

• the kurtosis [134] of Gm’s DFD.

Formally, suppose the node set of Gm is Nm = {n1, n2, . . . , ncard(Nm)} (card(Nm)

is the cardinality function of Nm, i.e., the number of elements in Nm), with the

out-degree of node ni (i = 1, 2, . . . card(Nm)) (i.e., the number of egress edges from

node ni) is di, the (out-)degree frequency distribution (DFD) of Gm is a function f

that maps from a non-negative integer j to the number of nodes in Gm that has j as

the out-degree:

f : N→ N

j 7→ card({k|k ∈ Nm, dk = j}).
(6.1)

Based on Equation (6.1), the last 4 numbers of the Gm’s C3GDFD-based signature

are defined as follows9:

• the mean µm:

µm =
1

card(Nm)

+∞∑
i=0

f(i). (6.2)

9There are variations of skewness and kurtosis’s definitions; we use the definition from statistics
library (incanter; http://incanter.org/) used in our implementation here. Reference: http:

//goo.gl/5SBu9L

http://incanter.org/
http://goo.gl/5SBu9L
http://goo.gl/5SBu9L
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• the standard deviation σm:

σm =

√√√√ 1

card(Nm)

+∞∑
i=0

(f(i)− µm)
2. (6.3)

• the skewness γm:

γm =
1

σ3
m

+∞∑
i=0

(f(i)− µm)
3 . (6.4)

• the kurtosis βm:

βm =
1

σ4
m

+∞∑
i=0

(f(i)− µm)
4 − 3. (6.5)

Taking Equations (6.2), (6.3), (6.4), and (6.5) together, the C3GDFD-based sig-

nature sm of callback m is:

sm = (card(Nm), µm, σm, γm, βm). (6.6)

with any undefined constituents10 replaced by 0 (the number zero).

The thoughts behind the design (Equation (6.6)) are:

• Statistical shape attributes (node count, mean, standard deviation, skewness,

and kurtosis) of the C3G can be used in queries to find callback methods that

have structurally similar call graphs, even if the method names have been ob-

fuscated beyond recognition by syntactic similarity alone.

• Since a unique signature is associated with each callback (which can be many

in a large WoA), signature should be efficient to compute and store, which

Equation (6.6) satisfies: 5 numbers to store per signature, with each number

has at worst O(n) time-complexity for an n-node call graph to compute.

For example, the following query returns Jk7H.PwcD’s C3GDFD-based signatures:

MATCH (:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

10Skewness γm and kurtoisis βm can be undefined if, for example, standard deviation σm = 0.
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--> (sig:CallbackSignature)

RETURN sig.name, sig.signature

which is:

Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

To find component callbacks that have similar signatures, we can issue the follow-

ing WoA query:

MATCH (:Apk{sha256:"a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3"})

--> (sig:CallbackSignature)

WITH sig

MATCH (siga:CallbackSignature)

WHERE

abs(sig.signature[0]-siga.signature[0])<5 AND

abs(sig.signature[0]*sig.signature[1]-siga.signature[0]*siga.signature[1])<5 AND

abs(sig.signature[2]-siga.signature[2])<0.1 AND

abs(sig.signature[3]-siga.signature[3])<0.1 AND

abs(sig.signature[4]-siga.signature[4])<0.1

MATCH siga <--(a:Apk)

RETURN substring(a.sha256, 0, 6) as sa, siga.name, siga.signature

LIMIT 10

which find 10 component callbacks that have similarly-shaped C3G (e.g., has a max-

imal edge/node count difference of 5). We get the result:

a7e5a9,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

631c4e,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

726699,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

47a579,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

49a5cc,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

43dbdd,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

cf9190,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

20a0d0,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

ad5e23,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

07f3c7,Jk7H.PwcD.SLYfoMdG.onCreate,"[102,1.804,3.825,2.526,6.103]"

which shows that the component callback Jk7H.PwcD.SLYfoMdG.onCreate from the

repakcaged Jk7H.PwcD APKs are detected by the structural similarity of their C3Gs.
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6.5 Component Callback Call Graph Extraction (C3GE)

6.5.1 Introduction

This section presents the design and core algorithms of Component Callback Call

Graph Extraction (C3GE), which is the other major component of WoA besides the

WoF presented in the previous section (Section 6.4). The need for C3GE has been

mentioned multiple times in previous sections, for example:

• In Section 6.3.4.2, the insufficiency (Figure 6.12) of a straightforward call graph

extraction algorithm (Algorithm 2) for APK analysis is demonstrated using a

real Android malware sample (Section 6.3.3). Figures 6.13 and 6.14, which are

used as contrast to Figure 6.12, are based on the call graphs extracted by C3GE.

• In Section 6.4.4.2, the C3GDFD-based signature that is used for capturing

structural similarity in WoF is based on call graphs extracted by C3GE.

The design of C3GE is motivated by the following observations:

• Invocations to externally defined Java methods in APKs are useful in APK

analysis. For example, invocation to the externally define Android API method

android.telephony.SmsManager.sendTextMessage is the defining behavior of

our running example Jk7H.PwcD (Section 6.3).

• Value, in addition to type, of arguments to method invocations are useful in

APK analysis. In addition to providing context to the invocation for analysis

(e.g., the target phone number and the content of SMS message are the first and

third arguments of sendTextMessage, respectively), argument value is critical

in resolving implicit control flows such as Java reflection.

• Value exists in APK not only as constants (e.g., integers and java.lang.String

constants), but can also be constructed through primitive operations (e.g., ad-

dition/subtraction) or Java methods (e.g., java.lang.String.length).
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Figure 6.25.: Components of C3GE and their interactions.

• Adversary scenarios such as malware analysis require explicit consideration of

anti-analysis techniques that may be employed by malware to evade detection.

These are not mere theoretic considerations: In Section 6.6, we evaluate C3GE against

the ADAM APK obfuscation framework [231], in which addressing these points, par-

ticularly dynamic value construction, is vital for robustness against obfuscation.

To the best of our knowledge, the C3GE presented here is the first work that ad-

dresses all of these points without relying on instrumented virtualization environments

such as in DroidScope [218] and AppsPlayground [168], an approach which presents

a different set of challenges in analysis coverage and efficiency.

6.5.2 Major Components and Their Interactions

Figure 6.25 illustrates C3GE’s components and their interactions. Initially, C3GE

takes an APK binary as input and, based on the information contained in its meta-

data (AndroidManifest.xml) and executable code (Dex), identifies the Java classes

corresponding to app components such as Activity, Service, ContentProvider, and

BroadcastReceiver [11]. For example, class Jk7H.PwcD.SLYfoMdG is the sole Activity

component in our running example Jk7H.PwcD.
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Figure 6.26.: Android Activity lifecycle. Source: https://developer.android.com/
images/training/basics/basic-lifecycle.png

Then, component callback methods (e.g., onCreate and onStart of Activity) of

these component classes are isolated and sorted according to the Android component

lifecycle model [10]. As shown in Figure 6.26, the component lifecycle model imposes

an order on the callback methods, so that, for example, onCreate is executed before

onStart. In Jk7H.PwcD, the Activity class Jk7H.PwcD.SLYfoMdG only has a single

callback onCreate.

After the callback methods are identified and sorted, each method is submitted to

a width-first budget-limited simulator to extract its Component Callback Call Graph

(C3G). The simulator is the core of C3G, which consists of the following interacting

procedures:

• simulate-method: method simulation,

• simulate-basic-block: basic block simulation, and

• simulate-evaluate: expression evaluation.

https://developer.android.com/images/training/basics/basic-lifecycle.png
https://developer.android.com/images/training/basics/basic-lifecycle.png
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The major data/control flows between these procedures are illustrated in Fig-

ure 6.25, summarized next, and is fully examined later in Sections 6.5.3 and 6.5.4.

6.5.2.1 simulate-method

simulate-method iteratively dequeues the next item from the worklist and feeds

the item into simulate-basic-block. After simulate-basic-block finishes, the

new worklist items returned from it are enqueued into the worklist. Each processed

work deducts 1 unit from the current simulate-method invocation’s basic-block bud-

get (BBB). simulate-method terminates when either the worklist becomes empty or

BBB is depleted, i.e., becomes 0.

Some points to note:

• Each work corresponds to a Soot [200, 121] statement in the current method,

from which simulate-basic-block will begin to process.

• Initially, the worklist consists of a single work that corresponds to the first

statement in the current method.

• The dequeue/enqueue discipline using worklist makes the simulation process

width-first : In the control flow graph of the current method, all children branches

of branching point (e.g., the then and else branches of a if statement) are

processed before further descendants of any of the branches.

• The “width-first” processing prevents unbalanced exploration of branches, which

might be exploited by an adversary to waste BBB on uninteresting branches.

More on this in Section 6.5.4.3.
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6.5.2.2 simulate-basic-block

Starting from a statement supplied by simulate-method, simulate-basic-block

extracts the subsequent basic block (i.e., a consecutive sequence of statements with

no intermediate branching and a single branching at the end), processes each state-

ment in that basic block, and evaluate all operations/method-invocations contained

in those statements with simulator-evaluate. The processing consists of the follow-

ing stages: 1. iterate through the intermediate non-branching statements, 2. examine

the last branching statement, evaluate it if necessary, and return “next statements”

to simulate-method.

Some points to note:

• simulate-basic-block’s behavior depends on the simulation strategy (conser-

vative branching, aggressive branching (the default), and linear scan) specified

at program startup.

– Under the “aggressive branching” and “conservative branching” strategies,

the behavior is to “process the next basic block” as described above.

– Under the “linear scan” strategy, the behavior is to sequentially process

all statements in the method that follow the beginning statement, rather

than only the next basic block.

• As will be further discussed in Section 6.5.4.4 after a concrete examination of the

algorithms in Section 6.5.3, the simulation strategies provide different trade-offs

between simulation efficiency, accuracy, and coverage.

6.5.2.3 simulator-evaluate

While simulate-method and simulate-basic-block are mostly about schedul-

ing statements for analysis, the actual work of analysis is done in simulator-evaluate.
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As shown in Figure 6.25, simulate-evaluate behaves differently based on the ex-

pression under evaluation.

• If the expression under evaluation is a Java method invocation corresponding

to the *-invoke Dalvik bytecode, simulate-evaluate evaluates the method

by passing it to simulate-method if Invocation Depth Budget (IDB) is not

exceeded.

– Simulation of the new method follows the same process as previously de-

scribed for simuate-method.

– IDB sets an upper bound on the depth that simulate-method will be

nestly invoked, and prevents the simulation process from getting trapped

in an infinite invocation loop.

• If the expression under evaluation is a safe method, simulate-method executes

the safe method on the host JVM if the allocated space does not exceed the

Collection Size Budget (CSB).

– A safe method is a Java method that is shared by Android and JVM,

and is either informational or has no other side effects beside creating and

manipulating data storage.

– Examples of safe methods are methods of class java.lang.String and

java.util.ArrayList.

– The safe methods in our implementation is listed in Figure 6.34.

– CSB prevents simulator’s resources (e.g, JVM heap space) from being ex-

hausted by malicious storage allocation (e.g., a 1 GBytes array) planted

by the adversary in the app’s bytecode that is never executed in regular

app usage.

• If the expression under evaluation is an implicit control flow (e.g., Java reflec-

tion), simulate-method resolves the control flow target and invokes the target
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with simulate-method as if it is a regular method invocation (the first case

above).

Several regular cases of evaluation that are not shown in Figure 6.25 include:

• assignment to Java class fields or local variables,

• primitive arithmetic operations such as additions and multiplications, and

• Java array allocations (subject to CSB check).

6.5.3 Techniques and Algorithms

After an overview of CG3E’s major components in the previous section, we ex-

amine its key techniques and algorithms in this section. For result reproducibility,

discussion is accompanied by real code snippets (with unrelated code suppressed but

source code line numbers retained) from the implementation. Besides the definite-

ness of real code (unlike psuedocode, real code has well-defined executable semantics

and must work to be meaningful), the use of a set of techniques, homoiconicity [202],

higher-order functions [171], and functional persistent data structures [65], in our

implementation enables succinct and concrete expression of algorithms that are oth-

erwise difficult to express. The code snippets shown below is written in the Clojure

programming language [99] (a modern Lisp dialect hosted on the Java Virtual Ma-

chine (JVM) platform) and corresponds to commit f39b41 on the GitHub source

code repository11.

6.5.3.1 Simulator Definition and Initialization

Figure 6.27 shows the record structure and the initialization procedure of the

C3GE simulator. A Simulator instance has two kinds of data records:

11https://github.com/pw4ever/web-of-apks/tree/f39b41

https://github.com/pw4ever/web-of-apks/tree/f39b41
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Figure 6.27.: Record structure and initialization of the C3GE simulator. File: src/-
woa/apk/dex/soot/simulator.clj.

• Method frame records, which include the this pointer, method argument val-

ues, local variables, and return values.

• Invocations of various types encountered during simulation, which include ex-

plicit invokes (i.e., through *-invoke bytecode), implicit invokes (e.g., Java

reflection or thread), and invocation paths that are used to reconstruct call

graphs.

create-simulator initializes a Simulator instance from the supplied this reference

and method argument values, and initialize other data records to be either empty

maps ({}) or empty sets (#{}).

As will be discussed later with Figures 6.29 and 6.30, each invocation of simulate-

-basic-block by simulate-method will be executed in an independent simulator

instance, implemented with immutable persistent data structure [19], that allows ba-

sic block simulations of different branches to be parallelized.

6.5.3.2 Worklist Processing: process-worklist

Figure 6.28 shows the worklist processing procedure process-worklist, which

processes items in the worklist until the worklist becomes empty. The use of Clojure’s
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Figure 6.28.: The worklist processing procedure process-worklist, which iteratively,
instead of recursively, processes items in the worklist until the worklist becomes empty.
File: src/woa/util.clj.

loop/recur control structure allows process-worklist to be written in recursive

form but executes iteratively, which avoids stack overflow during worklist processing

due to deep recursions. loop/recur can be viewed as manual, single-function, tail-call

optimization (TCO) [49].

More specifically, process-worklist takes an initial worklist initial-worklist

as an argument to bootstrap the iterative work processing process (line 25 in Fig-

ure 6.28); it terminates when all items in the worklist has been processed and the

worklist becomes empty (line 26 in Figure 6.28). The higher-order function, supplied

as the argument process to process-worklist, takes the worklist of the current

iteration and returns the new worklist for the next iteration. This abstraction of

process is used in multiple places in the implementation, with the prime example

being the next one in simulate-method.

6.5.3.3 Simulating Method: simulate-method

As previously summarized in Section 6.5.2.1, simulate-method iteratively sched-

ule worklist items for simulate-basic-block until the worklist becomes empty. Fig-

ure 6.29 shows the overall logic of simulate-method and Figure 6.30 focuses on the

worklist processing.

Specifically, before initiating worklist processing (by process-worklist on line

377), simulate-method does some state integrity check: 1. Filtering out ill-formed
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Figure 6.29.: Overall method simulation logic of simulate-method, with unrelated
details suppressed by suffixing triple dots “. . . ” (suppression is also applied in later
figures). File: src/woa/apk/dex/soot/simulator.clj.

input (lines 313–318 and 342–356); 2. Do not proceed if the simulator runs out of

Invocation Depth Budget (IDB; lines 331–340); 3. Check if the method under simu-

lation is an internal method, i.e., methods that are implemented in the APK rather

than being part of external Android API (lines 321–329). Afterwards, a single work-

list item, consisting of the freshly created simulator instance (line 379) and the first

statement of the current method (line 380), is used as the initial worklist to initiate

the worklist processing logic (lines 382–423).

As shown in Figure 6.30, for each worklist item, if there is still Basic Block Budget

(BBB) left (lines 386–387), simulate-method invokes simulate-basic-block with

this item (lines 389–395) and, after simulate-basic-block returns, takes one unit

of BBB off for the worklist item (i.e., does BBB accounting on line 396) and saves

the results (lines 397–408).
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Figure 6.30.: Worklist processing logic in simulate-method. File: src/woa/apk/-

dex/soot/simulator.clj.

As will be discussed shortly in Section 6.5.3.4, simulate-basic-block can return

zero (for return statement), one (for goto statement), or two (for if statement) “next

starting statements” (next-start-stmts on line 415). simulate-method creates one

new worklist item per each next-starting-statement (start-stmt on line 415), which

consists of the simulator state after simulate-basic-block returns (lines 417–422)

and start-stmt (line 423).

A notable point in simulate-method is the use of immutable persistent data

structure [19] (as provided by Clojure’s built-in data structure implementation) to

represent simulator state (refer to create-simulator in Figure 6.27 and updates on

lines 417–422 in Figure 6.30), which allows efficient (through structural sharing) and
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Figure 6.31.: Overall basic block simulation logic of simulate-basic-block. File:
src/woa/apk/dex/soot/simulator.clj.

succinct (without explicit state copying) representation of worklist items that diverge

from the current simulator state in future iterations.

6.5.3.4 Simulating Basic Block: simulate-basic-block

Each worklist item passed to simulate-basic-block consists of a simulator

state and a starting statement, i.e., simulator and start-stmt on line 434 of Fig-

ure 6.31. Figure 6.31 shows the overall structure of simulate-basic-block’s algo-

rithm. simulate-basic-block’s logic consists of the following steps.

1. Identify the basic block starting from start-stmt (lines 447–455);

2. Process each statement in the basic block based on its statement type and

content (lines 461–503; details in Figure 6.32);
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Figure 6.32.: Process basic block statements before the last branching statement in
simulate-basic-block. File: src/woa/apk/dex/soot/simulator.clj.

3. Create and return a new worklist item for each branching target of the last

statement in the basic block (lines 516–589; details in Figure 6.33).

An exception to this logic is that, in Step 1, if the “linear scan” simulation strategy

is selected in processing the APK (i.e., soot-simulation-linear-scan is true on

line 448), all statements starting from start-stmt to the end of the current method,

instead of the next basic block, are processed in Step 2. Therefore, under the “linear

scan” simulation strategy, statements are processed once by their appearance order

in the method without intermediate branching.
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Figure 6.32 shows the algorithm of processing basic block statements before the

last branching in simulate-basic-block. Three cases are considered:

• Assignment statement (lines 464–472): A common statement type that assigns

the value of some expression to a left-hand-side (lhs) expression (e.g., a method

frame local or Java class field). An example is line 1387 in Figure 6.5, which

assigns a Java array of type java.lang.Class to the method frame local r3.

• Identity statement (lines 477–485): Special assignment statement for method

arguments. An example is line 1373 in Figure 6.5, which assigns this instance

to the method frame local r0.

• Invoke statement (lines 487–492): A standalone method invocation statement.

An example is line 1393 in Figure 6.5, which invokes the Java method invoke

of class java.lang.reflect.Method.

The handling logic of these cases are as expected: Expressions are evaluated in the

context of the current simulator state, and the simulator state is accordingly up-

dated if there is any assignment. Note that majority of the work is centralized in

simulator-evaluate, which will be examined shortly in Section 6.5.3.5.

Mirroring the above is the algorithm of processing the last branching statement in

the current basic block in simulate-basic-block, as shown in Figure 6.33. Besides

the return statement case (which returns a value to simulate-method; not shown in

Figure 6.33), there are two cases, both conditional statements, to handle:

• goto statement (lines 527–529): Unconditional branching to a target statement.

An example is line 1433 in Figure 6.5, which unconditionally jumps to the

statement on label 1.

• if statement (lines 531–568): Conditional branching to one of two target state-

ments. An example is line 1382 in Figure 6.5, which jumps to the statement on

label 6 if method frame local i0 < 3, or falls through to the next statement (on

label 2) otherwise, i.e., i0 ≥ 3.
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Figure 6.33.: Process the last branching statement of a basic block in simulate-

-basic-block. File: src/woa/apk/dex/soot/simulator.clj.

Note that both goto and if statements are intra-procedural control flow transfer,

which means that the target statements must be in the same method as the condi-

tional statement. The only mechanism for inter-procedural control transfer is through

invoke statement/expression.

The effect of both goto and if statements is to create and return new worklist

items for the next iteration of simulate-method. While the goto statement simply

returns the unconditional branching target (lines 528–529), the behavior of the if
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statement depends on two things: 1. simulation branching strategy: conservative

branching or aggressive branching (the default); 2. whether the conditional expression

can be evaluated in the context of the simulator state. More precisely:

• Under conservative branching (lines 542–560), if the conditional expression can

be evaluated in the context of the simulator statement (lines 547–555), only

the true branch is followed; otherwise (if the conditional expression can not be

evaluated; lines 557–560), both branches are followed.

• Under aggressive branching (lines 561–568), both branches are followed.

These different simulation branching strategies provide different choices that bal-

ance between analysis coverage, efficiency, and accuracy. While conservative branch-

ing is more accurate in the sense that dead branches (branches of conditionals that

evaluate to false) will not be followed, it may miss branches that may evaluate to true

at run time. In Section 6.6, we will discuss such examples using real app samples.

6.5.3.5 Evaluating Expressions: simulator-evaluate

The essential work of the C3GE simulator is to evaluate expressions that appear

in statements. Such logic is centralized in simulator-evaluate, which is exam-

ined in this section. Specifically, we examine the following keys techniques behind

simulator-evaluate’s logic, summarized previously in Section 6.5.2.3: safe method

evaluation and implicit control flow resolution.

In Section 6.5.2, we point out: 1. The value of expression values in providing con-

tent for analysis and in resolving implicit control flows. 2. Values can be dynamically

constructed, in addition to be hard-coded in executable code (Dex) as constants.
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Figure 6.34.: The list of safe methods in our implementation. Safe methods of each
class are listed after the class name, with :all representing that “all methods of the
class are considered safe.” File: src/woa/apk/dex/soot/simulator.clj.
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Safe methods are a key part of our solution to the value problem.

A safe method is a Java method that is shared by Android and JVM, and is either

informational or has no other side effects beside creating and manipulating data stor-

age. Examples of safe methods are the Java methods of classes java.lang.String

and java.util.ArrayList. Safe methods are extensively used in our running exam-

ple Jk7H.PwcD, for example, on line 1425 and 1429 in Figure 6.5.

The list of safe methods in our implementation is shown in Figure 6.34. The

defining characteristics of safe methods are:

• They are available both in Android API and in Java API;

• They are either informational (e.g., java.lang.System.nanoTime) or only cre-

ate/manipulate data storage.

The key idea is that effects of invoking safe methods in APK (i.e., obtaining informa-

tion or creating data structures to store values) can be simulated on the JVM that

hosts the analysis program by using Java reflection. The advantage of this technique

is achieving high simulation fidelity without the burden of re-implementing/main-

taining these methods. Note that this technique exploits Android’s root in Java

and can be used only if the analysis platform is implemented on JVM. For instance,

since the Androguard APK analysis toolkit [63] (Section 6.3.4.1) is implemented in

Python, such techniques cannot be used there.

Figure 6.35 shows the logic of safe method simulation in simulator-evaludate.

When the current method is a safe method (lines 738–740), the corresponding method

on the hosting JVM is reflectively invoked for constructor methods (lines 746–751),

static methods (lines 753–756), and instance methods (lines 758–761). Moreover, to

prevent an adversary exploiting safe method simulation for evading detection by mali-

ciously allocating a large collection (for example, a 1 GBytes java.util.ArrayList)

and hence exhausting resources on the analysis platform, the size of the created col-

lection is checked against the pre-specified Collection Size Budget (CSB) on lines

765–768.
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Figure 6.35.: Safe method simulation logic in simulator-evaludate. File: src/-

woa/apk/dex/soot/simulator.clj.

In Section 6.6, the value of safe method simulation is demonstrated using real app

examples.

Implicit control flow resolution accounts for a significant portion of simulator--

evaluate’s logic, because there are multiple different cases to handle. Analysis of

our running example in Section 6.3.3 illustrates 2 mechanisms that are analyzed in

this section: Java reflection and Java/Android multi-thread/asynchronous execution.

Figure 6.36 shows most of the implicit control flow mechanisms that are handled in

the current implementation of C3GE, which include:

• Java reflection mechanisms: the methods in classes java.lang.Class, java.-

lang.reflect.Method, and java.lang.reflect.Field.
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Figure 6.36.: Implicit control flow mechanisms handled in current implementation of
C3GE. File src/woa/apk/dex/soot/simulator.clj.

• Java/Android multi-thread/asynchronous execution mechanisms: the methods

in classes/packages java.lang.Thread, java.lang.Runnable, java.util.-

concurrent.*, and android.os.Handler.

A third category, Android app component activation mechanism (e.g., android.-

content.Context.startActivity), currently does not receive special handling in

C3GE, because the WoF model does not require such inter-component information.

But if the need to handle inter-component activation arises in the future, the tech-

niques presented below can be extended to include this case.

Figure 6.37 shows the Java reflection handling logic in simulator-evaluate. The

essence of the logic is the following chain of class/method resolution: 1. When the

invoked method is java.lang.Class.forName (lines 910–911), simulator-evaluate

returns a reference to the Java class that has the corresponding name (lines 912–916).

2. When the invoked method is java.lang.Class.getMethod (lines 918–919), based

on the class found by java.lang.Class.forName, simulator-evaluate returns a list
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Figure 6.37.: Java reflection handling logic in simulator-evaluate. File: src/woa/-
apk/dex/soot/simulator.clj.

of candidate methods that match the method name (lines 920–931) and requested

arity (the number of arguments). Ideally, there should be one such candidate; if am-

biguity arises, more than one candidates can be returned as a conservative approxi-

mation. 3. When the invoked method is java.lang.reflect.Method.invoke (lines

933–934), based on the method candidates found by java.lang.Class.getMethod,

simulator-evaluate invokes the corresponding method candidates and returns the

results (lines 935–977).
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Following this logic, the resolution of reflection call to Jk7H.PwcD.SLYfoMdG.load

in Jk7H.PwcD.SLYfoMdG.onCreate (Figure 6.5) can be reenacted as follows.

• On line 1385, java.lang.Class.forName is invoked with the String Jk7H.Pw-

cD.SLYfoMdG as argument. A reference to the corresponding class is returned

by simulator-evaluate and stored in simulator local $r2 by simulate-ba-

sic-block.

• On line 1389, java.lang.Class.getMethod is invoked on $r2 that requests a

0-arity with the name “load.” The unique candidate method Jk7H.PwcD.SLY-

foMdG.load is thus returned by simulator-evaluate and stored in simulator

local $r4 by simulate-basic-block.

• On line 1393, java.lang.reflect.Method.invoke is invoked on the this is-

ntance with an empty array. The unique candidate method Jk7H.PwcD.-

SLYfoMdG.load is thus invoked by simulator-evaluate and the invocation

result is returned to simulate-basic-block.

Similarly, Figure 6.38 shows the Java thread handling logic in simulator-eva-

luate. Following the logic, the implicit control flow from the 0-arity Jk7H.PwcD.SL-

YfoMdG.send to Jk7H.PwcD.SLYfoMdG$1.run (Figure 6.9) can be reenacted as fol-

lows.

• On line 1544, the java.lang.Thread instance in $r1 is initialized with an

instance of Jk7H.PwcD.SLYfoMdG$1. simulator-evaluate stores a reference

to the Jk7H.PwcD.SLYfoMdG$1 instance in $r1.

• On line 1546, the start method is invoked on the java.lang.Thread instance

in $r1. simulator-evaluate invokes the run method on the referred Jk7H.Pw-

cD.SLYfoMdG$1 instance, and hence resolves the implcit contorl flow.

Besides implicit control flow mechanisms discussed above, another complication

for Android app analysis is the handling of UI widget’s callback methods. In Sec-
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Figure 6.38.: Java thread handling logic in simulator-evaluate. File: src/woa/-

apk/dex/soot/simulator.clj.

Figure 6.39.: UI widget’s callback method handling logic in simulator-evaluate.
File: src/woa/apk/dex/soot/simulator.clj.

tion 6.3.3.3 and Figure 6.7, we discuss how Jk7H.PwcD set up two button-widget call-

back methods that will be invoked only when the user clicks on the buttons. Since
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Android app are UI-driven, the need for proper handling of such callback methods is

common, rather than just a corner case.

Figure 6.39 shows how C3GE handle widget callback methods. When the method

setContentView of class android.app.Activity (or classes that descend from it,

which is the more common case, as in Jk7H.PwcD.SLYfoMdG) is invoked (line 773),

the sole integer argument is resolved as a Android layout resource identifier (extracted

from XML resource files in the res directory of the APK binary), and the corre-

sponding callback methods are resolved. If the resolution is successful (line 763), the

resolved method is invoked (line 766).

Through this procedure, widget callback methods are connected to the root method

(the component callback method) in C3G, as previously shown for Jk7H.PwcD.-

SLYfoMdG in Figure 6.14: the button onClick callback method mainButtonClick1 is

connected to the root method onCreate through the method setMain that invokes

setContentView.

6.5.4 A Review of C3GE’s Design

With the detailed examination in the previous section (Section 6.5.3), we are in

a position to reexamine the design of C3GE illustrated in Figure 6.25. In particular,

we will answer the following questions in this section.

• Why call the core of C3GE a simulator?

• Why is the simulator “budget-limited” and what are the budgets for?

• Why is the simulator “width-first” and what problem does it address?

• What are the alternative simulation strategies and their trade-offs?

• What are safe methods? Why are they not used before in, e.g., Androguard?

• What adversary scenarios are considered and how are they handled?



www.manaraa.com

190

6.5.4.1 Why call the core of C3GE a simulator?

As pointed out in Section 6.5.2, the core of C3GE consists of the procedures

simulate-method, simulate-basic-block, simulator-evaluate. These procedures

work by simulating the statements extracted from bytecode, as if the statements are

actually executed. Thus, “simulator” is an apt term for the process.

However, it must be pointed out that the purpose of C3GE is not to provide a full

Android emulation environment, but to simulate as much of app bytecode semantics

as needed to extract the C3G. The considerations are:

• Android emulation is a solved problem due to the existence of, for example,

Android’s QEMU-based emulator [13] and Genymotion [89]. The challenge of

using them to extract C3G is that of efficiency and coverage, which our C3GE

aims to address.

• The approach taken by our C3GE does not require setting up virtualized envi-

ronment and making the app runnable in it. Instead, any app can be analyzed

because the analysis is based on bytecode. Essentially, the arguments for “static

over dynamic analysis” [17, 81] apply here.

• By simulating safe method invocations and evaluating values, C3GE addresses

much of the challenges (such as identifying implicit control flows) for call graph

extraction without resorting to full emulation using virtualized environments.

6.5.4.2 Why is the simulator “budget-limited” and what are the budgets for?

Simulation in C3GE is bound by 3 types of budgets: basic block budget (BBB),

(method) invocation depth budget (IDB), and constant size budget (CSB). An oper-

ation is canceled if there is no budget for it:
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• For BBB, cancellation means simulate-method stops processing worklist items

and returns to its caller.

• For IDB, cancellation means simulator-evaluate stops evaluating method

invocation at deeper invocation depth and returns to its caller.

• For CSB, cancellation means simulator-evaluate stop allocating the Java

array/collection object (from either safe method or primitive operation eval-

uation) in the heap space of the JVM that simulator-evaluate is running

on.

These budgets are CG3E’s precautions against adversary scenarios.

• BBB prevents the C3GE simulator from getting trapped in an infinite intra-

procedural loop (e.g., goto loop) that is never executed in regular app usage,

but will trap an analysis process that is not designed to handle it.

• IDB is the inter-procedural counterpart of BBB, which prevents the C3GE

simulator from getting trapped in an infinite invocation loop.

• CSB prevents simulator’s resources (e.g. JVM heap space) from being exhausted

by malicious storage allocation (e.g, a 1 GBytes array) planted by the adversary

in the app’s bytecode that is never executed in regular app usage.

It should be mentioned that an alternative to IDB for preventing infinite loop is to

detect loops in invocation paths and stop as soon as such a loop is detected (invocation

loop detection/ILD). C3GE chooses IDB over ILD for the following reasons:

• IDB allows simulating recursive invocation while ILD does not.

• IDB is more efficient in computation/storage than ILD: While IDB only needs

to store/compare a single number (the current invocation depth), ILD needs

the full invocation path to decide if there is a loop.
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6.5.4.3 Why is the simulator “width-first” and what problem does it address?

The simulator is width-first because, by the worklist processing logic of simu-

late-method (Figures 6.28 and 6.29), sibling worklist items (i.e., branching from the

same if statement) are processed before descendant ones.

The reason to make the simulator width-first is to prevent an adversary from

exploiting BBB to evade detection. If the simulator is depth-first, an adversary can

deliberately set up a junk loop in a basic block branch, so that the BBB for the current

invocation to simulate-method will be wasted on this loop without exploring the

other branch. A width-first simulator handles this adversary scenario by exploring

the other branch before the next iteration of the junk loop.

6.5.4.4 What are the alternative simulation strategies and their trade-offs?

As discussed above in Sections 6.5.2 and 6.5.3, the alternative simulation strategies

that can be specified at program startup are: conservative branching, aggressive

branching, and linear scan, with aggressive branching being the default strategy.

• Under the “aggressive branching” and “conservative branching” strategies, the

behavior is to “process the next basic block” as described above. The different

between the two is that, if the conditional can be evaluated to a boolean value

(true or false) in an if statement, the conservative strategy will only follow the

true branch, while the aggressive strategy will follow both branches regardless

of the result of conditional evaluation.

• Under the “linear scan” strategy, the behavior is to sequentially process all

statements in the method that follow the beginning statement, rather than

only the next basic block.

These simulation strategies provide different trade-offs between simulation effi-

cient, accuracy, and coverage.
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• Conservative branching emphasizes accuracy, in which branches whose condi-

tional evaluates to false at analysis time are not followed. However, conserva-

tive branching may miss some branches that could be reached at runtime. An

example is the if statement on line 50 in Figure 6.10: That conditional always

evaluates to false at analysis time because the numbers field is empty; but an

asynchronous thread may add elements to numbers at run time to make the

conditional evaluates to true.

• Linear scan emphasizes coverage and efficiency, but is the least accurate strategy

among the three. It has good coverage and is efficient because every statement

in a method is processed once and once only : No missing statement, and no

repeatedly processing of the same statement. It is least accurate because it does

not respect intra-procedural control flow.

• Aggressive branching provides a middle ground between conservative branching

and linear scan. While it respects intra-procedural control flow by following

goto and if branching targets (unlike linear scan), it covers both branches in a

width-first manner (unlike conservative branching) so that no branches are left

unexplored.

Based on these considerations, aggressive branching is selected as the default simula-

tion strategy in C3GE.

In Section 6.6, we will investigate this further with real Android app samples.

6.5.4.5 What are safe methods? Why are they not used in, e.g., Androguard?

A safe method is a Java method that is shared by Android and JVM, and is ei-

ther informational or has no other side effects beside creating and manipulating data

storage. The list of safe methods in our implementation is shown in Figure 6.34.

They extend the applicability of value-based static analysis (such as context anal-
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ysis and Java reflection resolution) from Java primitives (e.g., primitive int and

double) to a much broader set of commonly used objects (e.g., java.lang.String

or java.util.ArrayList). Thus, for example, C3GE can resolve reflection calls in

which the method/class names are dynamically constructed from java.lang.String-

Builder.

The “safe method” technique exploits the fact that the Android platform and JVM

share the same semantics for the safe methods, and their behaviors in Android app can

be mirrored to the analysis platform on JVM. Therefore, analysis platforms that are

not hosted on JVM (such as Androguard, being a Python-based tool) cannot apply

the technique, and hence provides limited support for dynamic-value-based analysis.

6.5.4.6 What adversary scenarios are considered and how are they dealt with?

Based on the discussion above, it can be seen that the following adversary scenarios

are handled in C3GE.

• Hiding app logic through Java reflection or Android/Java asynchronous execu-

tion mechanisms.

– This is dealt with in simulator-evaluate (Section 6.5.3.5).

• Set up infinite loops to trap analysis.

– The intra-procedural case of infinite loops is dealt with by limiting the

number of basic blocks that are processed in one invocation of simu-

late-method, i.e., the Basic Block Budget (BBB).

– The inter-procedural case of infinite loops is dealt with by limiting the nest-

ing depth of simulate-method, i.e., the Invocation Depth Budget (IDB)

• Allocate large arrays/collections to overflow analysis program’s evaluation logic.
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– This is dealt with by limiting the size of collections that the analysis pro-

gram will allocate, i.e., the Collection Size Budget (CSB).

6.6 Evaluation

This section presents analysis and evaluation of WoA’s utility in analyzing APKs

using a million-node-scale prototype WoA generated from public APK datasets.

6.6.1 The Prototype WoA

6.6.1.1 Data Source

We build a prototype WoA using the APK samples from the following public data

sets: Android Malware Genome Project (AGMP) [236] (1.6 GBytes) and Drebin [16]

(6.9 GBytes). The two datasets are overlapped and, after merging the datasets to-

gether and filtering out ill-formed APKs, 5, 485 APK samples, including the running

example analyzed in Section 6.3 and its variants, are included in the prototype WoA.

Anti-virus (AV) software scanning results of 55 AV solution vendors of these APK

sample (updated as of 22 January 2015) are obtained from VirusTotal [207] and added

as Tag/VirusTotal nodes to the WoA.

6.6.1.2 Generation Parameter and Procedure

The prototype WoA is generated with the following parameters (these parameters

were discussed in Section 6.5): 1. Aggressive branching strategy. 2. Basic Block

Budget (BBB): 20. 3. Invocation Depth Budget (IDB): 8. 4. Collection Size Budget

(CSB): 10, 000.
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Suppose the APK binaries are stored in the dataset directory of the filesystem,

the results can be reproduced by the following Bash [161] command (see Section 6.3.2

for instructions of downloading and setting up the woa program):

find dataset -type f -name ’*.apk’ | woa --prep-tags ’’ | \

JVM_HEAP=5g \

woa -sv --dump-model /dev/null -j5 \

--soot-basic-block-simulation-budget 20 \

--soot-method-simulation-depth-budget 8 \

--soot-simulation-collection-size-budget 10000

After the completion of this command, the extracted information of these APKs

will be stored in .model-dump files, with the SHA-256 checksum of the APK binaries

being the file name before the .model-dump suffix. Then, a WoA (backing by a Neo4j

graph database) can be generated by the following Bash commands:

JVM_HEAP=5g woa -vL -l <(ls *.model-dump) -D prototype

( TARGET="$HOME/bin/";

mkdir -p ${TARGET};

wget -nc -nd -P ${TARGET} \

https://raw.githubusercontent.com/pw4ever/web-of-apks/gh-pages/bin/neo4j-batch-import \

&& \

chmod +x ${TARGET}/neo4j-batch-import )

"$HOME/bin/neo4j-batch-import" graph.db prototype.nodes prototype.rels

After the completion of these commands, the graph.db directory will contain the

generated graph database that can be imported into Neo4j for query.

6.6.1.3 Basic Information

Some basic information about the prototype WoA is listed below. 1. Overall:

3, 620, 120 nodes and 9, 380, 346 edges. 2. Fiber skeletons: 954 SigningKey nodes,

5, 485 Apk nodes, 3, 506 Dex nodes, 13, 178 Component nodes, 116, 840 Callback

nodes, 230, 392 Method nodes invoked by the Callback nodes (of which 220, 336
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are explicit invocations and 17, 103 are implicit invocations), 475, 678 Callback-

Signature nodes, 7, 633 Package nodes, 2, 653, 260 CallGraphNode nodes. 3. Pe-

ripherals: 295 Permission nodes, 92 IntentFilterCategory nodes, 1, 241 Intent-

FilterAction nodes, 49 MalwareFamily/Tag nodes (based on AGMP labels), 30, 941

VirusTotal/Tag nodes (obtained from VirusTotal).

6.6.2 Support for Declarative APK Analysis

In this section, we evaluate WoA’s utility in supporting APK analysis through a

series of explorations on the prototype WoA, each starting from a different angle.

6.6.2.1 APKs Connected by Dex Reusing

Different APK binaries can contain the same executable code (Dex). Therefore,

we can begin our inquiry by finding APKs that contain the same Dex.

Figure 6.40 shows the result of the following WoA query:

MATCH (d:Dex) <-- (a:Apk)

WITH substring(d.sha256, 0, 6) as d, collect(DISTINCT a.package) as pa,

count(DISTINCT a) AS ca

RETURN d, pa, ca

ORDER BY ca DESC LIMIT 10

which lists the top 10 repackaged DEX binaries (identified by the first 6 hexadecimal

digits of their SHA-256 checksum), the package names of the APKs that contain

them, and the number of these APKs.

The result in Figure 6.40 shows that:

• The mostly reused Dex has the SHA-256 identifier 05683f and the package

name com.soft.android.appinstaller



www.manaraa.com

198

Figure 6.40.: The top 10 repackaged DEX binaries (identified by the first 6 hexadeci-
mal digits of their SHA-256 checksum), the package names of the APKs that contain
them, and the number of these APKs in the prototype WoA.

• The Dex with SHA-256 identifier ae8e3f, which is contained in the running

example Jk7H.PwcD, is reused in 118 APK samples in the dataset, all of which

have the same package name.
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• The Dex with SHA-256 identifiers 6156b9 and 92fa44, which are reused in 92

and 53 APKs respectively, have similar package names of the form com.keji.-

danti*, with the * part being 3 decimal digits.

To further investigate the APKs that have the package name pattern com.keji.-

danti*, we use the following query,

MATCH (a:Apk) WHERE a.package=~"^com.keji.danti.*"

MATCH (a)<--(s:SigningKey)

RETURN DISTINCT s.sha256

which shows the keys that are used to sign APKs with package name pattern com.-

keji.danti.*, and get the following 4 signing keys.

D9:25:1B:BD:D3:53:EA:59:4F:29:65:54:2F:7A:29:BC:0E:0A:19:44:4C:9B:58:F1:90:A9:73:2D:A6:FB:6F:B1

EC:A6:72:F7:07:C5:DD:4E:A1:C6:5F:7B:DA:18:82:B9:3D:94:81:BD:92:34:4A:3A:1D:43:BA:B6:82:DD:E9:DC

BB:99:04:D8:AA:8B:FE:B7:22:FE:A9:F9:39:3C:0D:CD:55:1D:A0:98:C1:BB:43:92:2F:54:1D:84:34:CF:D2:66

DB:2B:DF:A6:C4:1C:B4:B1:1B:E6:7B:71:51:1E:21:85:AC:88:C6:5E:D2:52:5C:4D:77:C0:F7:5B:F5:06:96:1B

To see the other APKs that are signed by one of these keys but do not have the

package name pattern com.keji.danti.*, we use the following query:

MATCH (a:Apk) WHERE a.package=~"^com.keji.danti.*"

MATCH (a)<--(s:SigningKey)

WITH DISTINCT s

MATCH s-->(a:Apk)

WHERE NOT a.package=~"^com.keji.danti.*"

RETURN collect(DISTINCT a.package)

and get the result shown in Figure 6.41. The result indicates that the keys that sign

one of com.keji.danti.* APKs are used to sign other APKs.
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Figure 6.41.: The package names of the APKs that are signed by the authors who
have signed at least one APK with the package name pattern com.keji.danti.*.

Although the exploration can continue into those packages, we choose to stop

here. The point is that WoA facilitates such exploration by explicitly connecting

syntactically similar elements semantic in APKs in a single graph.

6.6.2.2 APKs Connected by Identical Authorship

A single signing key can be used to sign different APKs. The last query in the

previous section shows one example. APK analysis can begin by finding APKs con-

nected by authorship.

We begin the inquiry with following WoA query:

MATCH (signingKey: SigningKey) --> (apk:Apk)

WITH signingKey, count(apk) as ca

ORDER BY ca DESC

LIMIT 10

MATCH (signingKey) --> (a:Apk)

WITH signingKey, count(DISTINCT a) as cnt_all
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MATCH (signingKey) --> (a:Apk) <-- (m:Malware)

WITH signingKey, cnt_all, a, count(DISTINCT m) as cm

WHERE cm>=5

WITH signingKey, cnt_all, count(DISTINCT a) as cnt_malware

RETURN signingKey.sha256, cnt_all, cnt_malware,

cnt_all-cnt_malware AS discrepancy

ORDER BY discrepancy DESC, cnt_malware DESC

which finds, among the 10 most prolific authors in the dataset: 1. the number of

APKs that they have authored, 2. the number of samples among those APKs that

are flagged by at least 5 AV vendors, 3. the discrepancies between the two numbers.

We get the following result (sorted in descending order by the discrepancies and then

the AV flags):

D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01,219,215,4

A4:0D:A8:0A:59:D1:70:CA:A9:50:CF:15:C1:8C:45:4D:47:A3:9B:26:98:9D:8B:64:0E:CD:74:5B:A7:1B:F5:DC,365,363,2

24:2C:B4:8C:BF:CB:60:F5:A5:F0:AE:3E:44:35:DE:8F:08:E3:89:28:85:84:F7:66:39:B4:9C:8A:19:0A:06:98,495,494,1

6C:51:D9:0F:CA:DE:D4:68:1F:B9:68:92:22:2C:FE:EC:28:EB:30:ED:3E:DC:D9:E4:10:C6:DC:23:40:66:6E:70,326,325,1

EC:A6:72:F7:07:C5:DD:4E:A1:C6:5F:7B:DA:18:82:B9:3D:94:81:BD:92:34:4A:3A:1D:43:BA:B6:82:DD:E9:DC,170,169,1

50:C7:37:6D:76:72:24:ED:0C:2E:6B:43:14:55:EE:21:29:A7:8C:99:5A:E6:B5:D8:CA:E0:0E:96:48:1A:23:53,187,187,0

FD:FA:6E:8A:CB:6A:98:AC:30:76:BB:95:DC:B1:6C:74:F2:B7:87:B8:BE:36:EA:8C:20:D4:8F:BA:99:88:39:AA,171,171,0

B2:86:63:4C:26:14:28:D2:38:F7:16:0B:10:1B:E2:0C:C6:52:8C:D3:25:C0:4C:DA:11:D4:17:FF:C0:F3:4E:8A,147,147,0

17:67:7A:86:64:60:0A:EE:36:BF:77:51:56:60:34:9A:36:A1:4C:01:A4:36:7A:B4:EE:15:81:A0:50:0A:CC:CD,131,131,0

F0:90:C5:8C:4B:36:79:CB:1D:9A:97:2F:F0:68:C3:77:6D:70:55:05:3D:9F:6D:FA:29:34:B3:DC:22:7F:20:D6,128,128,0

in which we observe that only 5 out of the 10 authors have apps not detected by at

least 5 AV vendors, and the largest discrepancy is only 4 out of a total of 219 APKs.

This indicates that, months after these datasets were released (the AGMP dataset was

released in 2012; the Drebin dataset should be available online on February 2014 after

the NDSS Symposium ’14), most malware samples are integrated into AV vendor’s

database with a few exceptions.

Alternatively, with the following WoA query:

MATCH (signingKey: SigningKey) --> (apk:Apk)

WITH signingKey, count(apk) as ca

ORDER BY ca DESC

LIMIT 50

MATCH (signingKey) --> (a:Apk)

WITH signingKey, count(DISTINCT a) as cnt_all

MATCH (signingKey) --> (a:Apk) <-- (m:Malware)

WITH signingKey, cnt_all, a, count(DISTINCT m) as cm
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WHERE cm>=5

WITH signingKey, cnt_all, count(DISTINCT a) as cnt_malware

WHERE cnt_malware>0

WITH signingKey, cnt_all, cnt_malware,

cnt_all-cnt_malware AS discrepancy

WHERE discrepancy>0

RETURN signingKey.sha256, cnt_all, cnt_malware, discrepancy

ORDER BY discrepancy DESC, cnt_malware DESC

we find, among the 50 most prolific authors in the dataset, the following ones that

have discrepancies between “the number of APKs that they have authored” and “the

number of samples among those APKs that are flagged by at least 5 AV vendors.”

D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01,219,215,4

A4:0D:A8:0A:59:D1:70:CA:A9:50:CF:15:C1:8C:45:4D:47:A3:9B:26:98:9D:8B:64:0E:CD:74:5B:A7:1B:F5:DC,365,363,2

AF:DF:E7:6D:5C:8B:D9:94:F6:92:29:0C:DC:F8:EC:4E:96:EE:BC:05:E0:2C:EF:C0:69:59:D1:86:8E:32:A8:94,71,69,2

24:2C:B4:8C:BF:CB:60:F5:A5:F0:AE:3E:44:35:DE:8F:08:E3:89:28:85:84:F7:66:39:B4:9C:8A:19:0A:06:98,495,494,1

6C:51:D9:0F:CA:DE:D4:68:1F:B9:68:92:22:2C:FE:EC:28:EB:30:ED:3E:DC:D9:E4:10:C6:DC:23:40:66:6E:70,326,325,1

EC:A6:72:F7:07:C5:DD:4E:A1:C6:5F:7B:DA:18:82:B9:3D:94:81:BD:92:34:4A:3A:1D:43:BA:B6:82:DD:E9:DC,170,169,1

9F:56:98:1A:85:ED:E5:20:45:BA:2F:DE:53:82:9D:E3:9C:1D:75:02:BD:74:04:83:C6:CC:2A:7C:06:CA:6A:90,68,67,1

2F:19:FA:07:81:2F:33:42:A9:4C:8E:AF:16:66:B5:24:4A:EE:BF:9A:3D:F9:92:46:73:61:92:2F:21:F4:85:A6,61,60,1

We can proceed to investigate the discrepancies, for example, for the first author,

whose signing key has a SHA-256 checksum that begins with D8:24:59. Using the

following query:

MATCH (signingKey: SigningKey {sha256:

"D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01"

})

MATCH signingKey --> (apk:Apk)

WHERE NOT apk <-- (:Malware)

WITH signingKey, apk

MATCH (perm:Permission)<--apk-->(dex:Dex)

RETURN *

we find how the 4 non-flagged APKs out of the 219 APKs from author D8:24:59

relate to each other by permission and Dex. Figure 6.42 shows a visualization of the

result, in which we can observe that:

• Among the 4 APKs, two of them share the same package name (com.gp.-

tiltmazes) and the same Dex (SHA-256 identifier starts with 7164be).
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• The 4 APKs share some common permission requests, such as INTERNET and

CHANGE WIFI STATE.

• Some permissions are only requested by one of the APKs. For example, READ SMS

and WRITE SMS are only requested by com.ps.pushbox among the 4 APKs.

By their package name and requested permission, the 4 apps are not the variants

of the same one. We can proceed to find what common packages they use:

MATCH (signingKey: SigningKey {sha256:

"D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01"

})

MATCH signingKey --> (apk:Apk)

WHERE NOT apk <-- (:Malware)

WITH apk

MATCH apk-->(:Dex)-->(:Component)<--(p:Package)

WHERE NOT p.name=~’com.google.*’

WITH p, count(distinct apk) as ca

WHERE ca>=3

RETURN ca, p.name

ORDER BY ca DESC

LIMIT 10

which lists non-Google packages that are used in at least 3 out of the 4 apps. This is

the result:

4,cn.domob.android.ads

4,com.adwo.adsdk

3,com.waps

From the name of these packages, we can see that all 4 apps use two ad packages

cn.domob.android.ads and com.adwo.adsdk.

We can verify this finding on other apps from the same author:

MATCH (signingKey: SigningKey {sha256:

"D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01"

})

MATCH signingKey --> (apk:Apk)

WITH apk

MATCH apk-->(:Dex)-->(:Component)<--(p:Package)
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WHERE NOT p.name=~’com.google.*’

WITH p, count(distinct apk) as ca

RETURN ca, p.name

ORDER BY ca DESC

LIMIT 5

which does the same thing as above for all apps from the same author. We get the

following result:

218,com.adwo.adsdk

113,cn.domob.android.ads

110,com.waps

16,com.ps.keepaccount

16,com.ps.keepaccount.activity

which shows that the two ad packages, especially com.adwo.adsdk, are indeed com-

monly used by the author.

Back to the 4 non-flagged of the author, with the following WoA query:

MATCH (signingKey: SigningKey {sha256:

"D8:24:59:01:9E:8A:82:CA:36:0E:49:A7:0D:B2:7D:E9:A9:4A:1B:81:9F:FB:3B:CE:E7:91:C7:FB:68:60:C9:01"

})

MATCH signingKey --> (apk:Apk)

WHERE NOT apk <-- (:Malware)

WITH apk

MATCH apk--(d:Dex)--(a:Apk)

OPTIONAL MATCH a<--(m:Malware)

RETURN *

which find APKs that share Dex with them and, optionally, malware flags attached

to those APKs, we get the result shown in Figure 6.43.

The result indicates that 3 out of the 4 non-flagged apps, 1 com.ps.pushbox and

2 com.gp.tiltmazes, should actually be flagged—the missed malware labels may be

caused by incomplete results when the labels were collected.

The above exploration shows a benefit of using the declarative APK analysis ap-

proach supported by WoA: It can complement other approaches (e.g., machine learn-

ing based approach) by completing partial training datasetet. Machine-learning-based
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approaches are sensitive to quality of training dataset; suppose the two com.ps.-

pushbox APKs in Figure 6.43, one flagged as malware and the other not flagged,

are included the training dataset, it is not clear how the resulting classifier should

classify new com.ps.pushbox samples. In this case, the declarative approach as il-

lustrated above can be used to recover the missing flags in the training dataset.

6.6.3 Robustness Against APK Transformation

To evaluate WoA’s ability to withstand APK transformations that include repack-

aging and obfuscation, we obtain the ADAM APK transformation framework [231]

from its authors (Zheng et al.) and test WoA on the transformed APKs generated

by ADAM. Since ADAM’s license requires explicit permission from the authors to

acquire the software implementation, the reader is referred to the authors’ site12 for

instructions on acquisition.

Nevertheless, for result reproducibility, we have prepared transformed versions of

the running example Jk7H.PwcD generated by ADAM for download. Section 6.6.3.1

has the preparation instruction; Section 6.6.3.2 shows the transformations applied by

ADAM in detail.

6.6.3.1 Preparation

Execute the following Bash commands to obtain the transformed versions of

Jk7H.PwcD generated by ADAM.

(

PREFIX="https://github.com/pw4ever/web-of-apks/releases/download/apk-samples/";

NAMES=(

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-1_insert.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-2_ChangeName.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-3_ChangeCFG.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-4_StringEncrypt.apk"

12http://ansrlab.cse.cuhk.edu.hk/software/adam/

http://ansrlab.cse.cuhk.edu.hk/software/adam/
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"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-rebuild.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-resigned.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3-zipaligned.apk"

"Jk7H.PwcD-1-a00f2b489dac150e513526ab285141d41a127133cd3be2115046e22e189ff2a3.apk"

);

TARGET="$HOME/woa-samples/";

mkdir -p "${TARGET}"; cd "${TARGET}";

for i in ${NAMES[@]}; do

wget -nc -nd "${PREFIX}/${i}"

done

)

Afterwards, the woa-samples directory will contain the transformed APK samples

generated by ADAM.

6.6.3.2 APK Transformations in ADAM

Two types of APK transformations are provided by ADAM: repackaging and

obfuscation.

• Repackaging.

– Rebuild: The input APK is disassembled and re-assembled (baksmali/smali

in Android’s term) with the tool apktool [2]. The idea is to exploit the

binary-non-idempotent of the rebuilding process (i.e., the rebuilt APK bi-

nary does not necessarily equal to the original binary) to transform the

APK.

– Resign: The input APK is stripped of its original signature, and a new

signature is used to generate a resigned APK. The idea is that resigning

APK can evade APK-signature-based detection.

– Realign: Android’s zipalign is used to realign uncompressed data within

the APK (such as images or raw files) from the Android’s default 4-byte

alignment to 8-byte alignment boundaries. The idea is that realignment

changes the APK binary without changing APK program logic.
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Figure 6.44.: Effect of ADAM’s defunct-method-insertion obfuscation on
Jk7H.PwcD.SLYfoMdG.onCreate. A defunct method OFLog is inserted into each user-
defined class, as shown here for the class Jk7H.PwcD.SLYfoMdG. File: Jk7H.PwcD.-

SLYfoMdG.jimple.

• Obfuscation.

– Insert: A defunct method is into each user-defined class. This changes the

structure of these classes.

– Change method name: The string abc123 is appended to every internal

method, i.e., the method that is defined within the APK. However, as will

be discussed shortly in the next section, the implementation of ADAM

does not properly handle implicit control flow such as Java reflection—this

shows the importance of handling implicit control flows.

– Change intra-procedural control flow graph (CFG): A pair of goto instruc-

tion is inserted into the bytecode of each internal method. This changes

the CFGs of these methods.

– String encryption: Each string constant in the input APK’s bytecode is

replaced by an obfuscated one that can is recovered by calling a Decrypt-

String method. To the best of our knowledge, no existing work on static

APK analysis can handle this case.

While repackaging does not change the Dex inside the APK, all 4 types of obfus-

cation do change the executable code. Figures 6.44, 6.45, 6.46, 6.48, and 6.47 show

the effect of applying ADAM’s obfuscation on the running example Jk7H.PwcD.
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Figure 6.45.: Effect of ADAM’s method name obfuscation on Jk7H.PwcD.SLYfoMdG.-

onCreate. Unfortunately, as shown here, it does not properly handle implicit invo-
cation through Java reflection. This is an example of the challenge and importance
of handling implicit control flow, which is an important part of WoA’s C3GE. File:
Jk7H.PwcD.SLYfoMdG.jimple.

Figure 6.44 shows the effect of ADAM’s defunct-method-insertion obfuscation on

Jk7H.PwcD.SLYfoMdG.onCreate. A defunct method OFLog, which is not called by

any other methods, is created and inserted into each user-defined class, as shown here

for the class Jk7H.PwcD.SLYfoMdG. APK signatures that rely on APK method table

will be affected by this obfuscation.

Figure 6.44 shows the effect of ADAM’s method name obfuscation on Jk7H.PwcD.-

SLYfoMdG.onCreate. As previously mentioned, the string abc123 is appended to ev-

ery internal method, as shown here for load and onCreate of the class Jk7H.PwcD.-

SLYfoMdG. Unfortunately, Figure 6.44 indicates that ADAM’s method name obfusca-

tion fails to preserve app semantics in the following two cases:

• Component callback methods (e.g., onCreate) should not be renamed; other-

wise, Android runtime would be able to find and call them when the corre-

sponding event happens.

• Implicit control flows are not detected and renamed, as shown here on line 1389,

in which the string load does not match the renamed method loadabc123.

This shows the need for proper implicit control flow handling, which is an important

aspect of WoA.
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Figure 6.46.: Effect of ADAM’s goto-insertion obfuscation on Jk7H.PwcD.-

SLYfoMdG.onCreate. File: Jk7H.PwcD.SLYfoMdG.jimple.

Figure 6.47.: Effect of ADAM’s string encryption obfuscation on Jk7H.PwcD.-

SLYfoMdG.onCreate. Strings are encrypted by the method com.mzhengDS.Decrypt-

String. File: Jk7H.PwcD.SLYfoMdG.jimple.

Figure 6.44 shows the effect of ADAM’s goto-insertion obfuscation on Jk7H.PwcD.-

SLYfoMdG.onCreate. A goto instruction is inserted at the beginning of the method,

which jumps to another goto instruction at the end of the method, which then jumps

to the instruction after the first goto. This does not change the externally observable

behavior of the method; however, it changes the control flow within the method.

Lastly, Figures 6.48 and 6.47 show the effect of ADAM’s string encryption obfus-

cation.

As shown in Figure 6.48, a new class com.mzhengDS with a method Decrypt-

String is created. DecryptString transforms its sole String argument to a char

array (line 24), and if the String argument is non-empty (line 31), DecryptString
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Figure 6.48.: Effect of ADAM’s string encryption obfuscation: a new class com.-

mzhengDS with method DecryptString is inserted. File: com.mzhengDS.jimple.

starts de-obfuscating the string through char arithmetics (lines 38–116; abbreviated

in Figure 6.48).

Figure 6.47 shows the effect on Jk7H.PwcD.SLYfoMdG.onCreate. All the string

constants are first de-obfuscated by DecryptString before being used. On line

1456, the obfuscated string, Tu7R.ZgmN.CVIpyWnQ, of the original string Jk7H.PwcD.-

SLYfoMdG (refer to line 1385 in Figure 6.5) is first de-obfuscated by DecryptString

before being used on line 1458 to get the class reference. Similarly, on line 1460, the

obfuscated string, vykn, of the original string load (refer to line 1389 in Figure 6.5)

is first de-obfuscated by DecryptString before being used on line 1464 to get the

method reference.
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To the best of our knowledge, no publicly available static APK analysis tool is

designed to handle string encryption like this. This is a major motivation to the

design of WoA’s C3GE, which we evaluate next.

6.6.3.3 WoA C3GE’s Robustness on Transformed APKs

To evaluate WoA C3GE’s robustness in processing transformed APKs, execut-

ing the following Bash commands (refer to Section 6.3.2 on bootstrapping WoA’s

command-line interface woa):

(

cd "$HOME/woa-samples/";

ls *.apk | woa --prep-tags "" | JVM_HEAP=5g woa -sv -d /dev/null \

--soot-basic-block-simulation-budget 20 \

--soot-method-simulation-depth-budget 8 \

--soot-simulation-conservative-branching

woa -L -l <(ls *.model-dump) --debug-cgdfd | tee cgdfd.txt

sha256sum *.apk > sha256.txt

)

which saves the models extracted by WoA in *.model-dump files and the C3GDFD

signatures (Section 6.4.4.2) in the file cgdfd.txt.

Table 6.3 shows the effect of the APK transformations implemented in ADAM

on the component callback call graph (C3G) of Jk7H.PwcD.SLYfoMdG.onCreate ex-

tracted by WoA C3GE (this can be obtained from the result in the aforementioned

file cgdfd.txt). Except for two cases, the extracted call graphs are identical. The

explanations for the result is:

• Since “rebuild,” “realigned,” and “resigned” do not change the executable, the

extracted call graph is not affected.

• “defunct method insertion” only changes the method table of the APK by

associating OFLog with each class, but does not change the C3G rooted at

Jk7H.PwcD.SLYfoMdG.onCreate.
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• “goto insertion” only changes intra-procedural control flow, but does not change

the C3G rooted at Jk7H.PwcD.SLYfoMdG.onCreate.

As for the two exceptions, “change method name” and “string encryption,” the ex-

planation for the result is:

• As previously discussed in Section 6.6.3.2, ADAM’s implementation of “change

method name” does not match reflection calls to the renamed methods—which

changes app’s semantics. After reload is renamed to reloadabc123, C3GE

cannot resolve reflection call “reload.”

• As for “string encryption,” the inserted DecryptString method and the meth-

ods it invokes (e.g., java.lang.String.toCharArray in Figure 6.48) are added

to the C3G at appropriate places, which changes the C3GDFD and the signa-

ture. Note that, although a non-trivial method DecryptString is inserted, the

changes to C3GDFD and the signature is minor.

To confirm the C3G generated for “string encryption”-obfuscated APK by WoA

C3GE matches the original ones, using the following WoA query:

MATCH

(a:Apk {sha256:"ed050a1fce94acb4b07ea88630f1ec2d5cb690378734e97b23e01d08cf243350"})

-[:CALLGRAPH]->(cg:CallGraphNode)

MATCH (cg)-[:INVOKE*..4]->(m:CallGraphNode)

RETURN *

we get the 4-hop C3G of the callback method Jk7H.PwcD.SLYfoMdG.onCreate for the

obfuscated APK shown in Figure 6.49, which can be compared with Figure 6.23. Note

the inserted com.mzheng.DecryptString method are invoked from methods that use

String constants.

Furthermore, to investigate the details of the de-obfuscation process, we can trace

C3GE in action during DecryptString by the following invocation of woa on com-

mand line:
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Figure 6.50.: A snippet of simulator trace for the string decryption process of
com.mzheng.DecryptString, in which C3GE is de-obfuscating the obfuscated string
Tu7R.ZgmN.CVIpyWnQ into Jk7H.PwcD.SLYfoMdG for the Java reflection call in Jk7H.-

PwcD.SLYfoMdG.onCreate. The snippet shows the de-obfuscation of the first two
letters.

(

cd "$HOME/woa-samples/"

ls *StringEncrypt.apk | woa --prep-tags "" | JVM_HEAP=5g woa -s -d /dev/null \

--overwrite-model \

--soot-basic-block-simulation-budget 20 \

--soot-method-simulation-depth-budget 8 \

--soot-simulation-conservative-branching \

--soot-debug-show-all-per-statement > trace-se.txt

)

which saves an execution trace of the simulator in the file trace-se.txt, a snippet of

which is shown in Figure 6.50. Figure 6.50 shows the de-obfuscation of the first two

letters in the obfuscated string Tu7R.ZgmN.CVIpyWnQ into Jk7H.PwcD.SLYfoMdG for

the Java reflection call in Jk7H.PwcD.SLYfoMdG.onCreate (line 1456 in Figure 6.47).

The string de-obfuscation example above justifies the additional complexity of

C3GE’s simulator logic beyond simple replacement-based implicit control flow reso-

lution. To the best of our knowledge, this capability is a novel contribution of WoA

that no existing static APK analysis solution provides.
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6.7 Summary and Future Work

The central theme of this chapter is a novel declarative approach to Android APK

analysis based on the proposed Web of APKs (WoA) model. Towards this objective,

we examine various aspects of our publicly available reference implementation and

evaluate the approach on a prototype WoA that is built from real app samples. The

core contributions are:

• Propose, implement, and evaluate a declarative graph analysis approach, Web

of APKs, to analyze the relationship between APKs.

• Design and implement a call graph extraction algorithm that can handle Android-

specific implicit control flows and value obfuscation, and provide means to han-

dle adversary scenarios.

This is only a beginning. Future extensions to the present work include:

• Integrate resource references [229, 205] in the WoA model to facilitate the dis-

covery of APKs that are connected by usage of common resources.

• Integrate bytecode-based method signatures [97, 233] in the WoA model to

facilitate the discovery of APKs that have similar methods.

• Collect a library of APK analysis recipes based on WoA’s declarative graph

analysis support.

• Design new features that can be extracted with WoA for machine-learning-based

APK analysis approaches.

• Integrate WoA with a dynamic APK analysis tool to form a hybrid APK analysis

platform. A current candidate is our Figurehead tool, also publicly available

online13, which provides remote access to full Android API (including the classes

that used by Android system tools such as am and pm, and are usually not

available to app developers) with root privilege.

13https://github.com/pw4ever/tbnl

https://github.com/pw4ever/tbnl
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It should also be pointed out that there are several APK analysis scenarios that

are beyond the capability of present work, which include: 1. use of non-Java native

libraries, 2. dynamic code loading through Java’s class loading facility, 3. dynamic

value loading from external sources such as over Internet or from files/databases.

These are currently open problems that require further research to address. Nev-

ertheless, through collaboration and open access to implementation (in addition to

ideas), we hope this work will contribute to future mobile security research.
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7 CONCLUSION

This dissertation presents a study of several problems regarding the application of

opportunistic proximate links as a cost-effective alternative to persistent cellular links

in smartphone networks.

• Application scenarios that are considered include prioritized defense deployment

(Chapter 2) and mobile data offloading (Chapter 3).

• For distribution of useful content using opportunistic proximate links, while

sharing the same constraint of “no central coordination/planning through cel-

lular channel,” the different models that are considered include: full content

delivery coverage (Chapter 2), topical content delivery coverage (Chapter 3),

and full content delivery coverage with partial cellular coverage (Chapter 4).

• For preventing malware propagating over opportunistic proximate links, both

an abstract probabilistic behavioral characterization (Chapter 5) and concrete

cases on the Android platform (Chapter 6) are investigated.

With future work for each problem summarized in its respective chapter, the

following ideas are the essence of this dissertation in retrospect.

• A temporally dominating/covering subset of a smartphone network that is con-

nected by opportunistic proximate links, elected by a distributed algorithm us-

ing a local temporal quality metric (the reachability metric in Chapter 2 and the

KDE-based temporal coverage quality metric in Chapter 4), is a virtual content

delivery backbone that balances between delivery effectiveness and costs.

• In offloading topical cellular content, the virtue of patience (Chapter 3) is to

allow the more capable to have better chances of serving the common good
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through situation awareness that adapts to opportunistic neighborhood interest

profile, temporal topological importance, and content receival status.

• The KDE-based temporal coverage metric (Chapter 4) and “look-ahead” (Chap-

ter 5) are two way to handle uncertainty in temporal channel quality estimation

and evidence collection, respectively.

• As manifested by dogmatic filtering and adaptive look-ahead (Chapter 5), a

way to aggregate sequential indirect evidence without knowing the authenticity

of the evidence is to restrict how much the current opinion could be swayed by

the indirect evidence.

• The declarative graph query approach implemented in Web of APKs (Chap-

ter 6) provides an effective way to discover syntactic/semantic similarity be-

tween mobile apps, and provides support for both interactive exploration and

further automated analysis based on the extracted features.
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